

LIQUID CRYSTAL DISPLAY MODULE

Product Specification

DENSITRON	STANDARD LCD MODULE						
PRODUCT NUMBER	LWM12232E-SERIF	LWM12232E-SERIES					
DEFINITION	122*32 dots	Date 08/08/08					

INTERNAL APPROVALS											
Quality Mgr	Product Mgr	Project Leader	Mech. Eng	Electr. Eng							
Pat CHANG	Stéphan KIEFFER	Adrian SMYTH	Pat CHANG	Eric HUNG							
Date: 19/02/07	Date: 19/02/07	Date: 09/02/07	Date: 17/02/07	Date: 17/02/07							

TABLE OF CONTENTS

8.1

8.2

9

10

8.2.1

8.2.2

8.2.3

8.2.4

Pl	RODUCT SPECIFICATION	1
T.	ABLE OF CONTENTS	2
1	PART NUMBERING SYSTEM	4
2	MAIN FEATURES	6
3	MECHANICAL SPECIFICATION	7
	3.1 MECHANICAL CHARACTERISTICS	7
	3.2 MECHANICAL DRAWING	8
4	ELECTRICAL SPECIFICATION	9
	4.1 ABSOLUTE MAXIMUM RATINGS	9
	4.2 ELECTRICAL CHARACTERISTICS	9
	4.3 INTERFACE PIN ASSIGNMENT	
	4.4 INTERFACE BLOCK DIAGRAM	
	4.5 DISPLAY CONTROL INSTRUCTION	
5	OPTICAL SPECIFICATION	
6	TOUCH SCREEN SPECIFICATION_UNDER DEVELOPPEMENT_IN EVALUATION	25
7	BACKLIGHT SPECIFICATION	
	7.1 LED BACKLIGHT CHARACTERISTICS	26
	7.1.1 WHITE EDGE STANDARD LED BACKLIGHT CHARACTERISTICS	
	7.1.2 YELLOW GREEN STANDARD LED BACKLIGHT CHARACTERISTICS	
	7.1.3 BLUE STANDARD LED BACKLIGHT CHARACTERISTICS	
	7.1.4 GREEN STANDARD LED BACKLIGHT CHARACTERISTICS	
	7.2 CCFL BACKLIGHT CHARACTERISTICS	
	7.3 EL WHITE BACKLIGHT CHARACTERISTICS	
8	QUALITY ASSURANCE SPECIFICATION	28

REVISION RECORD

Rev.	Date	Page	Chapt.	Comment	ECR no.
1	29/02/2007			Initial Specification	

1 PART NUMBERING SYSTEM

<u>LWM</u> <u>12232E</u> - <u>BW</u> - <u>WCF</u> *

Densitron mono module

1 2 3 4 5

- ① Characters x Row format
- ② <u>Model serials number</u>
- ③ Display mode and backlight type :
 - A = Reflective (without backlight) =

B* = Transflective positive LEDS array type backlight (BG, BA, BW, BR...)

B*(E) = Transflective LEDS edge type backlight (BGE, BAE, BWE, BR...)

B = Transflective CFL

C* = Transflective positive EL backlight (CB, CW)

D* = Transmissive negative EL backlight (DB, DW)

E = CFL

- E* = Transmissive negative LEDS array type backlight (EG, EA, EW, ER...)
- E*(E) = Transmissive negative LEDS edge type backlight (EGE, EAE, EWE, ERE...)
- (* color LED or EL backlight = G/yellow-green, A/ amber, W/ white, R/ red, B/blue, ...)

④ <u>Temperature range and power supply</u>

- D = Standard temperature range; negative supply voltage required $(0^{\circ}C \rightarrow 50^{\circ}C)$
- S = Standard temperature range; on board negative voltage generator ($0^{\circ}C \sim +50^{\circ}C$)
- H= Wide temperature range; negative supply voltage required (-20°C \sim +70°C)
- W= Wide temperature range; on board negative voltage generator $(-20^{\circ}C \sim +70^{\circ}C)$
- S Fluid type and compensation circuit option
 - NY = STN yellow-green glass, without temperature compensation circuit
 - CY = STN yellow green glass, with temperature compensation circuit on board
 - NG = STN gray glass without temperature compensation circuit
 - CG = STN gray glass with temperature compensation circuit
 - NB = STN blue glass, without temperature compensation circuit
 - CB = STN blue glass with temperature compensation circuit
 - NF = FSTN black and white glass without temperature compensation circuit
 - CF = FSTN black and white glass with temperature circuit on board
- © Special code for customized features

Please refer to our commercial office

DENSITRON TECHNOLOGIES plc. – PROPRIETARY DATA – ALL RIGHTS RESERVED

Remarks and definitions :

1°) Display mode and backlight type :

- Reflective polarizer, no backlight, usable only in good ambient light conditions.
- Transflective polarizer uses a background backlight and a mirror reflector, usable in all lighting conditions.
- Transmissive polarizer needs the backlight switched on continuously, usable mostly in low ambient light conditions
- EL (electro-luminescent), uniform brightness, short life time (8000 hours max), needs EL inverter, low current consumption, low thickness.
- LED (light emitting diode), uniform brightness, long lifetime (100 000 hours), doesn't need inverter, reliable in vibration and shock environment, different colors available.

Array version is a direct lighting type, available in standard form, uniform and good brightness on all the active area.

Edge version is an edge lighting type providing a low consumption backlight, has a low thickness and brightness.

- Positive mode has dark pixels on a light background
- Negative mode has light pixels in a dark background and is normally used only with a transmissive polarizer as it needs a backlight on to be visible.

2°) Fluid type :

- STN yellow green or gray LCD has a yellow green or gray background with dark blue pixels and offers a good contrast.
- FSTN LCD is to produce very high contrast with black and white pixels using a film polarizer

2 MAIN FEATURES

ITEM	CONTENTS
Display Format	122 x 32 dot
Overall Dimensions	80.0 x 36.0 x 10.2MAX)
Viewing Area	60.0 x 18.0
LCD type	STN, FSTN
Mode	Available in Reflective/Positive /Negative modes
Viewing Angle	6 and 12 O' clock
Duty	1/32
Driver IC	SED 1520 or equivalent
Backlight type	None /EL/ LED
Backlight colour	Yellow Green / White / Amber/Red/Blue/Tri-Colour
DC/DC converter	None/Included
Operating temperature	From 0/+50°C to -20°/+70°C
Storage temperature	From -20°/+70°C to -30°/+80°C

3 MECHANICAL SPECIFICATION

3.1 MECHANICAL CHARACTERISTICS

Item	Dimension	Unit
Number of Characters	122 x 32 dot	
Module dimension	80.0 x 36.0 x 14.2(MAX)-LED	mm
	80.0 x 36.0 x 10.2(MAX)-No BL/EL	
View area	60.0 x 18.0	mm
Active area	53.64 x 15.64	mm
Dot size	0.4 x 0.45	mm
Dot pitch	0.44 x 0.49	mm

3.2 MECHANICAL DRAWING

Version LED, EL

LED B/L

EL or NO B/L

4 ELECTRICAL SPECIFICATION

4.1 ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	Top	0	_	+50	°C
Storage Temperature	T _{ST}	-10	_	+60	°C
Input Voltage	VI	0	_	V _{DD}	V
Supply Voltage For Logic	V _{DD}	0	_	6.7	V
Supply Voltage For LCD	V _{DD} -V _{LCD}	0	—	-10	V

Note 1: Background colour changes slightly depending on ambient temperature. This phenomenon is reversible. Ta≤70 °C: 75% RH max

Note 2: Ta≤80 °C: 75% RH max

4.2 ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	_	4.75	5.0	5.25	V
		Ta=0°C	—	_	5.1	V
Supply Voltage For LCD	V_{DD} - V_0	Ta=25℃	_	4.8	—	V
		Ta=+50°C	4.5	—	_	V
Input High Volt.	V _{IH}	_	$0.7 V_{DD}$	_	V _{DD}	V
Input Low Volt.	V _{IL}	_	0	_	$0.3 V_{DD}$	V
Output High Volt.	V _{OH}	_	2.4	_	_	V
Output Low Volt.	V _{OL}	_	—	_	0.4	V
Supply Current	I _{DD}	—	—	1.2	—	mA

VSS = 0 V, Ta = 25 °C

* I_{DD} measurement condition is for all pattern ON

4.3 INTERFACE PIN ASSIGNMENT

Pin No.	Symbol	Level	Description
1	V _{ss}	0V	Ground
2	V _{dd}	5V	Power supply for logic
3	Vo	(Variable)	Operating voltage for LCD
4	A0	H/L	H : Data L : Instruction
5	CS1	H/L	Chip select signal for IC1
6	CS2	H/L	Chip select signal for IC2
7	CL	-	External clock 2KHz
8	E(/RD)	H/L	Enable Signal (/RD is for 80 series MPU read signal)
9	R/₩	H/L	H : Read ; L : Write
	(/WR)		(/WR is for 80 series MPU write signal)
10	DB0	H/L	Data bus
11	DB1	H/L	Data bus
12	DB2	H/L	Data bus
13	DB3	H/L	Data bus
14	DB4	H/L	Data bus
15	DB5	H/L	Data bus
16	DB6	H/L	Data bus
17	DB7	H/L	Data bus
18	RES	H/L	68-series MPU when $H \rightarrow L$ the LCM is reset.
			80- series MPU when $L \rightarrow H$ the LCM is reset.
			High level:68-series MPU interface
			Low level:80-series MPU interface
19	A	+4.2V	LED +
20	K	GND	LED -

4.4 Interface Block Diagram

2 Drive from pin19, pin20

(Will rever get Vout from pin19) 3 Drive from Vdd,Vss

(Contrast performance may go down)

Recommanded Value V_{100} = 4.2 V, I_{100} = 120m A R= 6.7 Ω (1/2 Whit)

4.5 DISPLAY CONTROL INSTRUCTION

♦Block Diagram

This 122×32 dots LCD Module built in two SBN1661G_M18-D LSI controller.

♦MPU interface

The SBN1661G_M18-D controller transfers data via 8-bit bi-directional data buses (Do to D7), it can fit any MPU if it corresponds to SBN1661G_M18-D Read and Write Timing Characteristics.

◆Data transfer

The SBN1661G_M18-D driver uses the A0, E and R/W signals to transfer data between the system MPU

and internal registers, The combinations used are given in the table below.

A0	R/W	Function
1	1	Read display data
1	0	Write display data
0	1	Read status
0	0	Write to internal register (command)

♦Busy flag

When the Busy flag is logical 1, the SBN1661G_M18-D series is executing its internal operations. Any command other than Status Read is rejected during this time. The Busy flag is output at pin D7 by the Status Read command. If an appropriate cycle time (t_{CYC}) is given, this flag needs not be checked at the beginning of each command and, therefore, the MPU processing capacity can greatly be enhanced.

Display Start Line and Line Count Registers

The contents of this register form a pointer to a line of data in display data RAM corresponding to the first line of the display (COM0), and are set by the Display Start Line command.

Column Address Counter

The column address counter is a 7-bit pre-settable counter that supplies the column address for MPU access to the display data RAM. See Figure 1. The counter is incremented by one every time the driver receives a Read or Write Display Data command. Addresses above 50H are invalid, and the counter will not increment past this value. The contents of the column address counter are set with the Set Column Address command.

◆Display Data RAM

The display data RAM stores the LCD display data, on a 1-bit per pixel basis. The relation-ship between display data, display address and the display is shown in Figure 1.

♦ Page Register

The page register is a 2-bit register that supplies the page address for MPU access to the display data RAM. See Figure 1. The contents of the page register are set by the Set Page Register command.

Page address		DATA		1							Line address	Common output
		D0					\mathbb{Z}				00H	COM 0
		D1									01H	COM 1
		D2									02H	COM 2
D1,D2=		D3									03H	COM 3
0,0		D4						$\overline{\ }$			04H	COM 4
		D5		\mathbb{N}							05H	COM 5
		D6									06H	COM 6
		D7									07H	COM 7
		D0									08H	COM 8
		D1									09H	COM 9
		D2									0AH	COM 10
0,1		D3									OBH	COM 11
		D4									0CH	COM 12
		D5									0DH	COM 13
		D6									0EH	COM 14
		D7									OFH	COM 15
		D0									10H	COM 16
		D1									11H	COM 17
		D2	D2								12H	COM 18
1,0		D3									13H	COM 19
	D4									14H	COM 20	
		D5									15H	COM 21
		D6	6								16H	COM 22
		D7									17H	COM 23
		D0									18H	COM 24
		D1									19Н	COM 25
		D2									1AH	COM 26
1,1		D3									1BH	COM 27
		D4									1CH	COM 28
		D5									1DH	COM 29
		D6									1EH	COM 30
		D7									1FH	COM 31
	Colou		D0=0	H00	01H	02H	03H	04H	05H	H90	33H 3CH 4EH 4FH	
	Im ad	ADC	D0=1	4FH	4EH	4DF	4CH	4BH	4AF	49H	ООН	
	dress		seg	_	2	3	4	5	6	7		
			pin									
				┝╸							- SED1520	
	SED1521											

Figure 1: page and column address * The 122*32 dots display area is consist of two 61*32. The interface control pin E1 enables the left 61*32,E2 enables the right 61*32.

The host microcontroller can issue commands to the SBN1661G_X. Table 27 lists all the commands. When issuing a command, the host microcontroller should put the command code on the data bus. The host microcontroller should also give the control bus C/D, E(RD), and R/W(WR) proper value and timing. **Commands**

COMMAND			CO	MMA	ND C	ODE			FUNCTION
COMMAND	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
Write Display Data	Data Men	a to b nory.	e writ	ten in	to the	e Disp	olay D	ata	Write a byte of data to the Display Data Memory.
Read Display Data	Data Men	a read nory.	from	n the I	Displa	ay Da	ta		Read a byte of data from the Display Data Memory.
Read-Modify-Write	1 1 1 0 0 0 0 0				0	0	0	Start Read-Modify-Write operation.	
END	1 1 1 0 1 1 0						1	0	Stop Read-Modify-Write operation.
Software Reset	1	1	1	0	0	0	1	0	Software Reset.

Write Display Data

The Write Display Data command writes a byte (8 bits) of data to the Display Data Memory. Data is put on the data bus by the host microcontroller. The location which accepts this byte of data is pointed to by the Page Address Register and the Column Address Register. At the end of the command operation, the content of the Column Address Register is automatically incremented by 1.

The setting of the control bus for issuing Write Display Data command

C/D	E/(RD)	R/W(WR)
1	1	0

Read Display Data

The Read Display Data command starts a 3-step operation.

1. First, the current data of the internal 8-bit output latch of the Display Data Memory is read by the microcontroller, via the 8-bit data bus DB0~DB7.

2. Then, a byte of data of the Display Data Memory is transferred to the 8-bit output latch from a location specified by the Page Address Register and the Column Address Register,

3. Finally, the content of the Column Address Register is automatically incremented by one. Fig. 16 shows the internal 8-bit ouptut latch located between the 8-bit I/O data bus and the Display Data Memory cell array. Because of this internal 8-bit output latch, a dummy read is needed to obtain correct data from the Display Data Memory. For Display Data Write operation, a dummy write **is not** needed, because data can be directly written from the data bus to internal memory cells.

The setting of the control bus for issuing Read Display Data command

C/D	E/(RD)	$R/\overline{W}(\overline{WR})$
1	0	1

Read-Modify-Write

When the Read-Modify-Write command is issued, the SBN1661G_X enters into Read-Modify-Write mode. In normal operation, when a Read Display Data command or a Write Display Data command is issued, the content of the Column Address Register is automatically incremented by one after the command operation is finished. However, during Read-Modify-Write mode, the content of the Column Address Register is not incremented by one after a Read Display Data command is finished; only the Write Display Data command can make the content of the Column Address Register automatically incremented by one after the command operation is finished.

During Read-Modify-Write mode, any other registers, except the Column Address Register, can be modified. This command is useful when a block of the Display Data Memory needs to be repeatedly read and updated.

Fig. 17 gives the change sequence of the Column Address Register during Read-Modify-Write mode. Figure 18 gives the flow chart for Read-Modify-Write command.

The setting of the control bus for the Read-Modify-Write command

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for the Read-Modify-Write command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	0	0

The END command

The END command releases the Read-Modify-Write mode and re-loads the Column Address Register with the value previously stored in the internal buffer (refer to Fig. 17) when the Read-Modify-Write command was issued.

DENSITRON TECHNOLOGIES plc. – PROPRIETARY DATA – ALL RIGHTS RESERVED

The setting of the control bus for the END command

C/D	$E/(\overline{RD})$	R/W(WR)
0	1	0

The setting of the data bus for the END command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	1	1	1	0

The command code is EE Hex.

Software RESET command

The Software Reset command is different from the hardware reset and can not be used to replace hardware reset.

When Software Reset is issued by the host microcontroller,

• the content of the Display Start Line Register is cleared to zero(A4~A0=00000),

- the Page Address Register is set to 3 (A1 A0 = 11),
- the content of the Display Data Memory remains unchanged.

• the content of all other registers remains unchanged.

The setting of the control bus for Software RESET

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for Software RESET

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	1	0

The command code is E2 Hex.

Timing Characteristics

CL and FR timing

CL and FR timing characteristics at VDD=5 volts

VDD = 5 V $\pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width	0	33	6		μs
T _{WLCL}	CL cock low pulse width		33	6		μs
T _R	CL clock rise time		2	28	120	ns
T _F	CL clock fall time			28	120	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-2.0	0.2	1.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.2	0.36	μS

CL and FR timing characteristics at VDD=3 volts

VDD = $3 V \pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width		65	(c)		μs
T _{WLCL}	CL cock low pulse width		65			μs
T _R	CL clock rise time			50	220	ns
T _F	CL clock fall time			50	220	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-3.6	0.36	3.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.32	0.6	μS

AC timing for interface with an 80-type microcontroller

timing for interface with a 80-type microcontroller at VDD=5 volts VDD = 5 V $\pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS}	Address set-up time	20			ns
t _{AH}	Address hold time	10			ns
t _F , t _R	Read/Write pulse falling/rising time		15		ns
t _{RWPW}	Read/Write pulse width	200			ns
t _{CYC}	System cycle time	1000			ns
t _{DS}	Data setup time	80	8		ns
t _{DH}	Data hold time	10	8		ns
tACC	Data READ access time		90	CL= 100 pF.	ns
t _{он}	Data READ output hold time	10	60	Refer to Fig. 23.	ns

AC timing for interface with an 80-type microcontroller at VDD=3 volts VDD = $3 V \pm 10\%$; VSS = 0 V; Tamb = $-20 \degree$ C to $+75\degree$ C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS}	Address set-up time	40			ns
t _{AH}	Address hold time	20			ns
t _F , t _R	Read/Write pulse falling/rising time		15		ns
t _{RWPW}	Read/Write pulse width	400			ns
t _{CYC}	System cycle time	2000			ns
t _{DS}	Data setup time	160		8 r	ns

symbol	parameter	min.	max.	test conditons	unit
t _{DH}	Data hold time	20			ns
t _{ACC}	Data READ access time	6	180	CL= 100 pF,	ns
t _{он}	Data READ output hold time	20	120	Refer to 23.	ns

Note:

The measurement is with the load circuit connected. The load circuit is shown in Fig. 23.

AC timing for interface with a 68-type microcontroller at VDD=5 volts VDD = 5 V $\pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	20		13	ns
t _{AS2}	Address set-up time with respect to C/D, CS	20		2	ns
t _{AH1}	Address hold time with respect to R/W	10		2	ns
t _{AH2}	Address hold time respect with to C/D, CS	10			ns
t _F , t _R	Enable (E) pulse falling/rising time	ar.	15	á	ns
tcyc	System cycle time		1	Note 1	ns
t _{EWR}	Enable pulse width for READ	100		6	ns
t _{EWW}	Enable pulse width for WRITE	80	1	6	ns
t _{DS}	Data setup time	80		6	ns
t _{DH}	Data hold time				ns
t _{ACC}	Data access time		90	CL= 100 pF.	ns
t _{он}	Data output hold time	10	60	Refer to Fig. 23.	ns

AC timing for interface with a 68-type microcontroller at VDD=3 volts VDD = $3 V \pm 10\%$; VSS = 0 V; Tamb = $-20 \degree$ C to $+75\degree$ C.

DENSITRON TECHNOLOGIES plc. – PROPRIETARY DATA – ALL RIGHTS RESERVED

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	40		2	ns
t _{AS2}	Address set-up time with respect to C/D, CS	40	4		ns
t _{AH1}	Address hold time with respect to R/W	20			ns
t _{AH2}	Address hold time respect with to C/D, CS	20	4		ns
t _F , t _R	Enable (E) pulse falling/rising time	10	15		ns
tcyc	System cycle time	2000		Note 1	ns
t _{EWR}	Enable pulse width for READ	200			ns
t _{EWW}	Enable pulse width for WRITE	160			ns
t _{DS}	Data setup time	160			ns
t _{DH}	Data hold time	20			ns
t _{ACC}	Data access time		180	CL= 100 pF.	ns
toн	Data output hold time	20	120	Refer to Fig. 23.	ns

Note:

1. The system cycle time(tCYC) is the time duration from the time when Chip Enable is enabled to the time when Chip Select is released.

5	OPTICAL	SPECIFICATION	(STN Characteristics).
---	---------	---------------	------------------------

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V) θ	CR≧2	10		105	deg
view Aligie	(H) φ	CR≧2	-30		30	deg
Contrast Ratio	CR		-	3		
Response Time	T rise			200	300	ms
	T fall			200	300	ms

Note 1: definition of viewing angle $\theta 1 \& \theta 2$

Note 2: definition of viewing angle $\theta 3 \& \theta 4$

Note 4: definition of response time

DENSITRON TECHNOLOGIES plc. - PROPRIETARY DATA - ALL RIGHTS RESERVED

6 TOUCH SCREEN SPECIFICATION

Under Development/evaluation

DENSITRON TECHNOLOGIES plc. – PROPRIETARY DATA – ALL RIGHTS RESERVED

7 BACKLIGHT SPECIFICATION

7.1 LED BACKLIGHT CHARACTERISTICS

7.1.1 WHITE EDGE LED BACKLIGHT CHARACTERISTICS

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	32	40	60	mA	V=3.5V
Supply Voltage	V	_	3.5	3.6	V	_
Reverse Voltage	VR	_	—	5	V	_
Luminous Intensity	IV	10	—	_	CD/M ²	ILED=40mA
Wave Length	λp	_		_	nm	ILED=40mA
Life Time	_	_	10000	_	Hr.	V≦4.6V
Color	White					

7.1.2 YELLOW GREEN STANDARD LED BACKLIGHT CHARACTERISTICS

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED		120	240	mA	V=4.2V
Supply Voltage	V	_	4.2	4.6	V	
Reverse Voltage	VR	_	—	8	V	_
Luminous Intensity	IV	60	—	_	CD/M ²	ILED=120mA
Wave Length	λp	_	571	—	nm	ILED=120mA
Life Time	_	_	100000	_	Hr.	$V \leq 4.6 V$
Color	Yellow Green					

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	32	40	60	mA	V=3.2V
Supply Voltage	V	3.1	3.2	3.3	V	_
Reverse Voltage	VR	-	_	5	V	_
Luminous Intensity	IV	38.4	48	_	CD/M ²	ILED=40mA
Life Time (For Reference only)	_	_	30K	_	Hr.	ILED≦40Ma 25℃,50-60%RH, (Note 1)
Color	Blue			1		

7.1.3 BLUE LED BACKLIGHT CHARACTERISTICS

7.1.4 GREEN LED BACKLIGHT CHARACTERISTICS

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	96	120	180	mA	V=4.2V
Supply Voltage	V	4.0	4.2	4.4	V	_
Reverse Voltage	VR	-	-	5	V	_
Luminous Intensity	IV	58	72	-	CD/M ²	ILED=120mA
Wave Length	λр	557	560	563	nm	ILED=120mA
Life Time	_	-	50K	-	Hr.	ILED≦120mA
Color	green			·		

7.2 CCFL BACKLIGHT CHARACTERISTICS

NA

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Drive Voltage	Vmax	-	110		Vrms	25°C
Drive Wave	Fmax	-	400		Hz	25°C
Brightness	-	29.6	37		cd/m ²	110V/400Hz
Power Consumption	-	-	27	-	mW	110V/400Hz
C 1	х	-	0.15	-	-	11017/40011-
Chromatism	Y	-	0.21			-110 V/400Hz
Life time	-	2000h	rs		110V/400Hz	
Color	-	White			Light on 110V/400Hz	

7.3 EL WHITE BACKLIGHT CHARACTERISTICS

EL BL drives directly from A , K.

8. QUALITY ASSURANCE SPECIFICATION

8.1CONFORMITY

The performance, function and reliability of the shipped products conform to the Product Specification.

8.2 DELIVERY ASSURANCE

8.2.1 Delivery inspection standards.

- MIL-STD-105E, general inspection level II, single sampling level;
- IPC-AA610 rev. C, class 2 electronic assemblies standard

Rank	Item Inspected	Defect type	AQL	Remark	
		Non display			
		Over current		D:1	
	Display	Missing segment	0.65%	malfunction	
Critical defect		Wrong viewing direction		manufiction	
		Backlight OFF			
	Dimension	PCB and bezel out of specification	0.65%	Assembly failure	
	Display	Incorrect operating			
Major defect	Dealdight	Flashing, dust	1.0%		
	Dacklight	Wrong colour			
		Black and white spot			
		Black and white lines			
		Polariser scratch			
	LCD	Bubbles in polariser			
		Segment deformation, pin hole	_		
		Colour uniformity	_	Appearance	
Minor defect		Glass chip	2.5%	defect	
		Wire bond pad exposed	-	dereet	
	COB	Insufficient covering with			
		resin (wire bond line exposed)	-		
		Bubble, dust on COB			
	PCB	Dust, solder ball on PCB			
		Pad scratch			
		Total	2.5%		

The quality assurance levels are shown below:

8.2.2 Zone definition

8.2.3 Visual inspection

- Inspect under 2x20W or 40W fluorescent lamp (approximately 3000 lux) leaving 25 to 30 cm between the module and the lamp and 30 cm between the module and the eye (measuring position).
- Appearance is inspected at the best contrast voltage (best contrast is adjusted considering clearness and crosstalk on screen).
- Inspect the module at 45° right and left, top and bottom.
- Use the optimum viewing angle during the contrast inspection.

8.2.4 Standard	of appearance	inspection
----------------	---------------	------------

Units	mm
Units.	111111

No	Item	Criteria				
1	Black spot, white spot, dust	Round type: as per following drawing $\emptyset = (X+Y)/2$				
		Acceptable quantity				
			Size	Zone A	Zone B	
		*	Ø<0.1	Any number		
		Y	0.1<Ø<0.2	6	Ah	
			0.2<Ø<0.3	2	Any number	
		X	0.3<Ø	0		
		Line type: as per following drawing				
		W		ole quantity		
		W Lengt	$\frac{1}{10000000000000000000000000000000000$	Zone A	Zone B	
			$W \le 0.02$	Any number	-	
		$L \leq 3.0$	$\frac{0}{5} = \frac{0.02 < W \le 0.03}{0.03 < W < 0.05}$	2	Any number	
			0.05 <w< td=""><td>As round type</td><td></td></w<>	As round type		
23	Polariser scratch Polariser bubble	Total acceptable quantity: 3 Scratch on protective film is permitted Scratch on polariser: same as No. 1 $\emptyset = (X+Y)/2$ Acceptable quantity Size Zone A Zone B $\Im : \Im : 2$				
		V V	$\bigcirc <0.3$			
			1.0<Ø<1.5	1	Any number	
		X T	1.0 < 0 < 1.5	0		
		Total acceptable quantity: 4				
4	Segment deformation	1.a. Pin hole on segmented display W: segment width				
		$\emptyset = (A+B)/2$ Acceptable quantity		7		
		AB	Width	Ø	j	
			W≤0.4	$\emptyset \leq 0.2$ and	$\emptyset \leq 1/2W$	
			W>0.4	Ø≤0.25 and	$1 \emptyset \leq 1/3 \text{ W}$	
		A A A A A A A A A A A A A A A A A A A	Total acceptable Pin holes with Ø	quantity: 1 defec ð under 0.10 mm a	t per segment are acceptable	

No	Item	Criteria		
4	Segment deformation	1b. Pin hole on dot matrix display	AcceptableSize $a,b<0.1$ $(a+b)/2 \le 0.1$ $0.5 < \varnothing < 1.0$ Total acceptable	e quantity Any number Any number 3 quantity: 7
		2. Segments / dots with different width	Accep a≥b a <b< th=""><th>table a/b≤4/3 a/b>4/3</th></b<>	table a/b≤4/3 a/b>4/3
		3. Alignment layer defect $\emptyset = (a+b)/2$	AcceptableSize $\emptyset \leq 0.4$ $0.4 < \emptyset \leq 1.0$ $1.0 < \emptyset \leq 1.5$ $1.5 < \emptyset \leq 2.0$ Total acceptable	Any number 5 3 2 4 quantity: 7
5	Colour uniformity	Level of sample for approval set as limit sa	ample	
6	Backlight	The backlight colour should correspond to the product specification Flashing and or unlit backlight is not allowed Dust larger than 0.25 mm is not allowed		
7	СОВ	Exposed wire bond pad is not allowed Insufficient covering with resin is not allowed (wire bond line exposed) Dust or bubble on the resin are not allowed		
8	PCB	No unmelted solder paste should be present on PCB Cold solder joints, missing solder connections, or oxidation are not allowed No residue or solder balls on PCB are allowed Short circuits on components are not allowed		

9 RELIABILITY SPECIFICATION

Test Item	Test Condition	Description	
High Temperature Operation	50°C or 70°C 200hrs	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	
Low Temperature Operation	0°C or -20°C 200hrs	Endurance test applying the electric stress under low temperature for a long time.	
High Temperature Storage	70°C or 80°C 200hrs	Endurance test applying the high storage temperature for a long time.	
Low Temperature Storage	-20°C or -30°C 200hrs	Endurance test applying the high storage temperature for a long time.	
High Temperature & High Humidity Storage	80°C,90%RH 96hrs	Endurance test applying the high temperature and high humidity storage for a long time.	
Thermal Shock Test	-30°C 25°C 80°C 30min 5min 30min For 10 cycles	Endurance test applying the low and high temperature cycle. Burn In Test.	
Vibration	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hrs	Endurance test applying the vibration during transportation and using.	
ESD	VS=800V,RS=1.5kΩ CS=100pF	Endurance test applying the electric stress to the terminal.	
Shock Test	Test 50G Half sign wave 11 msedc 3 times of each direction		

10 HANDLING PRECAUTIONS

Safety

If the LCD panel breaks, be careful not to get the liquid crystal fluid in your mouth or in your eyes. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of water.

Mounting and Design

Place a transparent plate (e.g. acrylic, polycarbonate or glass) on the display surface to protect the display from external pressure. Leave a small gap between the transparent plate and the display surface.

When assembling with a zebra connector, clean the surface of the pads with alcohol and keep the surrounding air very clean.

Design the system so that no input signal is given unless the power supply voltage is applied.

Caution during LCD cleaning

Lightly wipe the display surface with a soft cloth soaked with Isopropyl alcohol, Ethyl alcohol or Trichlorotriflorothane.

Do not wipe the display surface with dry or hard materials that will damage the polariser surface. Do not use aromatic solvents (toluene and xylene), or ketonic solvents (ketone and acetone).

Caution against static charge

As the display uses C-MOS LSI drivers, connect any unused input terminal to VDD or VSS. Do not input any signals before power is turned on.

Also, ground your body, work/assembly table and assembly equipment to protect against static electricity.

Packaging

Displays use LCD elements, and must be treated as such. Avoid strong shock and drop from a height. To prevent displays from degradation, do not operate or store them exposed directly to sunshine or high temperature/humidity.

Caution during operation

It is indispensable to drive the display within the specified voltage limit since excessive voltage shortens its life. Direct current causes an electrochemical reaction with remarkable deterioration of the display quality. Give careful consideration to prevent direct current during ON/OFF timing and during operation.

Response time is extremely delayed at temperatures lower than the operating temperature range while, at high temperatures, displays become dark. However, this phenomenon is reversible and does not mean a malfunction or a display that has been permanently damaged.

If the display area is pushed on hard during operation, some graphics will be abnormally displayed but returns to a normal condition after turning off the display once.

Even a small amount of condensation on the contact pads (terminals) can cause an electro-chemical reaction which causes missing rows and columns. Give careful attention to avoid condensation.

Storage

Store the display in a dark place where the temperature is $25^{\circ}C \pm 10^{\circ}C$ and the humidity below 50%RH. Store the display in a clean environment, free from dust, organic solvents and corrosive gases. Do not crash, shake or jolt the display (including accessories).