# DMT050WVNMCMI-1H PRODUCT SPECIFICATION

Version 0.1 Aug 16, 2023

TBD

| Custome          | er's Approval |
|------------------|---------------|
| <u>Signature</u> | <u>Date</u>   |
|                  |               |

Prepared by Yvette Hsieh
Approved by Evan Huang

# **Revision History**

| VERSION | DATE         | DESCRIPTION | AUTHOR       |
|---------|--------------|-------------|--------------|
| 0.1     | Aug 16, 2023 | Preliminary | Yvette Hsieh |
|         |              |             |              |
|         |              |             |              |
|         |              |             |              |
|         |              |             |              |
|         |              |             |              |
|         |              |             |              |

# **Legal Notice**

Copyright ©2023 Densitron

All information contained in this document is proprietary and confidential to Densitron and is subject to a non-disclosure agreement. Unauthorized use, duplication, modification or disclosure of this information by any means without prior consent of Densitron is prohibited.

Every effort has been made to ensure the accuracy of this document; however, Densitron accepts no responsibility for any inaccuracies, errors or omissions herein. Densitron reserves the right to change specifications without prior notice in its absolute discretion, to supply the best product possible. Where Densitron or any of its group companies has (i) made a change to a product to incorporate a specific customer requirement or (ii) has created a design to a customer's specific requirements, in either case the customer will indemnify and hold the relevant Densitron entity harmless against any claim that delivery against such requirement breaches any intellectual property or other rights of any 3rd party.

All brands and trademarks are the property of their respective owners and are hereby fully acknowledged.

# **Table of Contents**

| 1. | GENE  | RAL DESCRIPTION                  | 5  |
|----|-------|----------------------------------|----|
|    | 1.1   | Introduction                     | 5  |
|    | 1.2   | Main Features                    | 5  |
|    | 1.3   | CTP Features                     | 6  |
| 2. | MECH  | HANICAL SPECIFICATION            | 7  |
|    | 2.1   | Mechanical Characteristics       | 7  |
|    | 2.2   | Mechanical Drawing               |    |
| 3. | ELECT | TRICAL SPECIFICATION             | 9  |
|    | 3.1   | Absolute Maximum Ratings         | 9  |
|    | 3.2   | Electrical Characteristics       | 9  |
|    | 3.3   | Interface Pin Assignment         | 10 |
|    | 3.4   | Block Diagram                    | 12 |
|    | 3.5   | Timing Characteristics           | 13 |
| 4. | ELECT | TRICAL SPECIFICATION TOUCH       | 22 |
|    | 4.1   | Electrical Characteristics       | 22 |
|    | 4.2   | I <sup>2</sup> C Timing          |    |
| 5. | OPTIC | CAL SPECIFICATION                | 27 |
|    | 5.1   | Optical Characteristics          | 27 |
| 6. | LED B | ACKLIGHT SPECIFICATION           | 30 |
|    | 6.1   | LED Backlight Characteristics    | 30 |
|    | 6.2   | Internal Circuit Diagram         | 30 |
| 7. | PACK  | AGING                            | 31 |
| 8. | QUAL  | ITY ASSURANCE SPECIFICATION      | 32 |
|    | 8.1   | Conformity                       | 32 |
|    | 8.2   | Environment Required             | 32 |
|    | 8.3   | Delivery Assurance               | 32 |
|    | 8.4   | Dealing with Customer Complaints | 39 |
| 9. | RELIA | BILITY SPECIFICATION             | 40 |
|    | 9.1   | Reliability Tests                | 40 |

# **DENSITRON**

# TFT LCD Module

| 10. | HANDLII | NG PRECAUTIONS        | 41   |
|-----|---------|-----------------------|------|
|     |         |                       |      |
|     | 10.1    | Handling Precautions  | . 41 |
|     | 10.2    | Storage Precautions   | . 42 |
|     | 10.3    | Designing Precautions | . 42 |
|     | 10.4    | Operation Precautions | . 42 |
|     | 10.5    | Cleaning Precautions  | . 43 |
|     | 10.6    | Other Precautions     | . 44 |

# 1. General Description

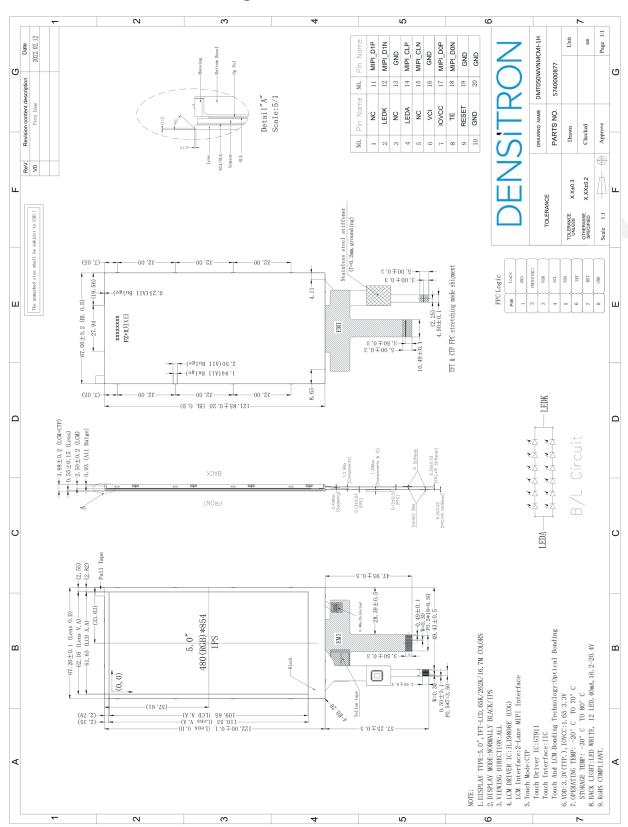
### 1.1 Introduction

This is n 5.0" size colour active matrix TFT LCD module that uses amorphous silicon TFT as a switching device. The display is normally black mode, transmissive, and featuring high contrast and excellent colour saturation. The resolution of the TFT-LCD is 480 x 854 and can display up to 16.7M colours. The display module supports 2-Lane MIPI interface and optical bonding touch panel.

### 1.2 Main Features

| Item                  | Contents                             |  |  |  |
|-----------------------|--------------------------------------|--|--|--|
| Display Type          | TFT LCD                              |  |  |  |
| Screen Size           | 5.0" Diagonal                        |  |  |  |
| Display Format        | 480 x RGB x 854 Dots                 |  |  |  |
| No. of Colour         | 65K/262K/16.7M                       |  |  |  |
| Overall Dimensions    | 67.26 (W) x 122.00 (H) x 3.98 (D) mm |  |  |  |
| Active Area           | 61.6320 (W) x 109.6536 (H) mm        |  |  |  |
| Mode                  | Normally black / Transmissive        |  |  |  |
| Surface Treatment     | Glare (6H)                           |  |  |  |
| Viewing Direction     | All round                            |  |  |  |
| Interface             | 2-Lane MIPI                          |  |  |  |
| Driver IC             | ILI9806E                             |  |  |  |
| Backlight Type        | LED, White, 12 chips                 |  |  |  |
| Touch Panel           | PCT                                  |  |  |  |
| Touch Interface       | I <sup>2</sup> C                     |  |  |  |
| Touch Driver IC       | GT911                                |  |  |  |
| Bonding Type          | Optical Bonding                      |  |  |  |
| Operating Temperature | -20°C ~ 70°C                         |  |  |  |
| Storage Temperature   | -30°C ~ 80°C                         |  |  |  |
| ROHS                  | Compliant to RoHS                    |  |  |  |

# 1.3 CTP Features


| Item                    | Contents                 |  |
|-------------------------|--------------------------|--|
| Touch Panel             | PCT                      |  |
| Structure               | G+G                      |  |
| Controller IC           | GT911                    |  |
| Interface               | I <sup>2</sup> C         |  |
| Slave Address           | 0x5D(7bit) or 0x14(7bit) |  |
| Touch Mode Five fingers |                          |  |
| Logic Level             | 3.3V                     |  |

# 2. Mechanical Specification

# 2.1 Mechanical Characteristics

| Item                 | Characteristic                    | Unit |  |
|----------------------|-----------------------------------|------|--|
| Display Format       | 480 x RGB x 854                   | Dots |  |
| Overall Dimensions   | 67.26 (W) x 122.00 (H) x 3.98 (D) | mm   |  |
| Active Area          | 61.6320 (W) x 109.6536 (H)        | mm   |  |
| Dot Pitch            | 0.1284 x 0.1284 (H)               | mm   |  |
| Weight               | TBD                               | g    |  |
| IC Controller/Driver | ILI9806E                          |      |  |

# 2.2 Mechanical Drawing



# 3. Electrical Specification

# 3.1 Absolute Maximum Ratings

(Ta=25°C, VSS=0)

| ltem                             | Symbol | Min  | Max | Unit |
|----------------------------------|--------|------|-----|------|
| Digital Supply Voltage           | Vcı    | -0.3 | 6.5 | V    |
| Digital Interface Supply Voltage | lovcc  | -0.3 | 3.3 | V    |
| Operating Temperature            | Тор    | -20  | +72 | °C   |
| Storage Temperature              | Тѕт    | -30  | +80 | °C   |

**Note 1:** When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. For normal operations, it is desirable to use this module under the conditions according to Section 3.2 "Electrical Characteristics", to avoid malfunctioning.

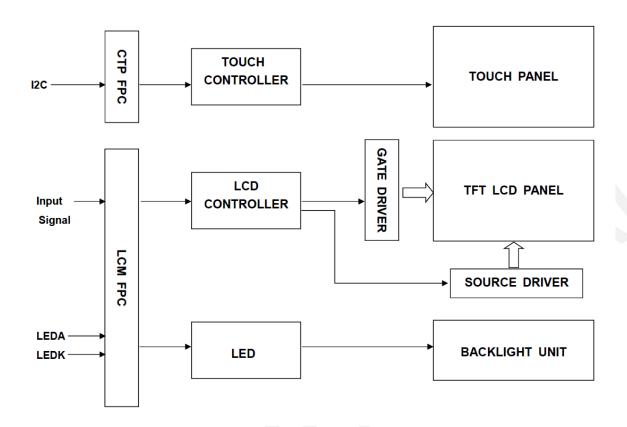
Note 2: Please refer to item of RELIABILITY.

### 3.2 Electrical Characteristics

#### 3.2.1 DC Electrical Characteristics

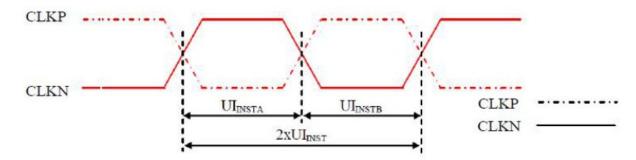
| ltem                             | Symbol          | Min       | Тур. | Max                   | Unit |
|----------------------------------|-----------------|-----------|------|-----------------------|------|
| Digital Supply Voltage           | Vcı             | 2.5       | 3.3  | 6.0                   | V    |
| Digital Interface Supply Voltage | lovcc           | 1.65      | 1.8  | 3.3                   | V    |
| Normal Mode Current Consumption  | I <sub>DD</sub> | -         | 40   | 80                    | mA   |
| Loyal Input Valtage              | ViH             | 0.7 lovcc | -    | lovcc                 | V    |
| Level Input Voltage              | VIL             | -0.3      | -    | 0.3 lovcc             | V    |
| Loyal Output Valtage             | V <sub>OH</sub> | 0.8 lovcc | -    | lovcc                 | V    |
| Level Output Voltage             | V <sub>OL</sub> | GND       | -    | 0.2 I <sub>ovcc</sub> | V    |

# 3.3 Interface Pin Assignment


### 3.3.1 TFT Pin Definition

| No.       | Symbol   | I/O | Function                                                                                                                        |
|-----------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 1         | NC-      | -   | -                                                                                                                               |
| 2         | LDEK     | Р   | Cathode pin of backlight                                                                                                        |
| 3         | NC       | -   | -                                                                                                                               |
| 4         | LEDA     | Р   | Anode pin of backlight                                                                                                          |
| 5         | NC       | -   | -                                                                                                                               |
| 6         | VCI      | Р   | Supply voltage (3.3V)                                                                                                           |
| 7         | IOVCC    | Р   | I/O power supply voltage                                                                                                        |
| 8         | TE       | 0   | Tearing effect output. Leave the pin to open when not in use.                                                                   |
| 9         | RESET    | ı   | The external reset input. Initializes the chip with a low input. Be sure to execute a power-<br>on reset after supplying power. |
| 10        | GND      | Р   | Ground                                                                                                                          |
| 11        | MIPI_D1P | I/O | MIPI DSI differential data pair (DSI-Dn +/-). If MIPI are not used, they should be connected                                    |
| 12        | MIPI_D1N | I/O | to DGND.                                                                                                                        |
| 13        | GND      | Р   | Ground                                                                                                                          |
| 14        | MIPI_CLP | ı   | MIPI DSI differential clock pair (DSI-CLK +/-). If MIPI are not used, they should be connected                                  |
| 15        | MIPI_CLN | 1   | to DGND.                                                                                                                        |
| 16        | GND      | Р   | Ground                                                                                                                          |
| 17        | MIPI_D0P | I/O | MIPI DSI differential data pair (DSI-Dn +/-). If MIPI are not used, they should be connected                                    |
| 18        | MIPI_DON | I/O | to DGND.                                                                                                                        |
| 19-<br>20 | GND      | Р   | Ground                                                                                                                          |

# 3.3.2 CTP Interface Description


| No. | Symbol     | I/O | Function                                |
|-----|------------|-----|-----------------------------------------|
| 1   | GND        | Р   | Ground                                  |
| 2   | VDDIO (NC) | -   | No connection                           |
| 3   | VDD        | Р   | Supply voltage                          |
| 4   | SCL        | I   | I <sup>2</sup> C clock input            |
| 5   | SDA        | I   | I <sup>2</sup> C data input and out put |
| 6   | INT        | I   | External interrupt to the host          |
| 7   | RST        | I   | External reset, low is active           |
| 8   | GND        | Р   | Ground                                  |

# 3.4 Block Diagram

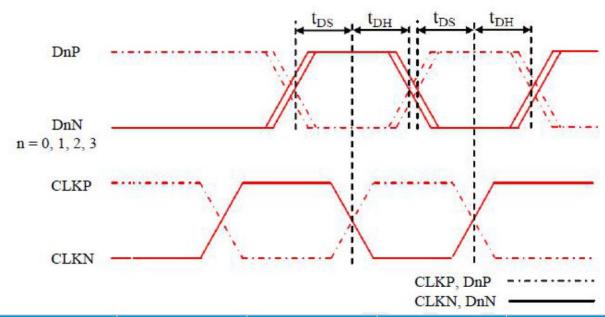


# 3.5 Timing Characteristics

# 3.5.1 High Speed Mode – Clock Channel Timing

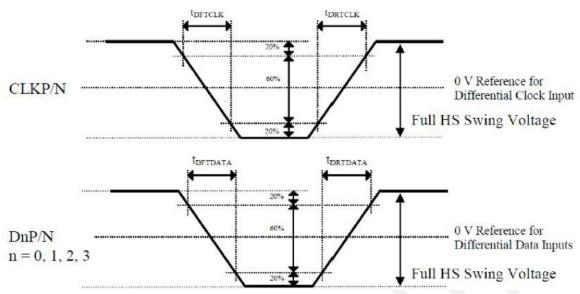


#### **DSI Clock Channel Timing**


| Signal | Symbol                                     | Parameter               | Min | Max  | Unit |
|--------|--------------------------------------------|-------------------------|-----|------|------|
| CLKP/N | 2xUI <sub>INST</sub>                       | Double UI instantaneous | 4   | 25   | ns   |
| CLKP/N | UI <sub>INSTA</sub> , UI <sub>INISTB</sub> | UI instantaneous        | 2   | 12.5 | ns   |

Note 1: UI = UI<sub>INSTA</sub> = UI<sub>INISTB</sub>

Note 2: Define the minimum value of 24 UI per pixel please see below

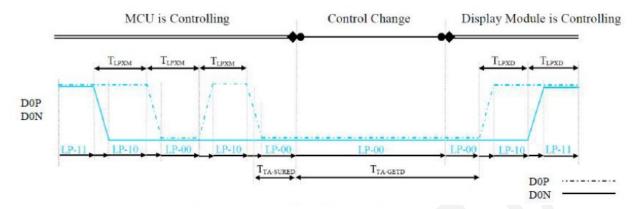

| Data Type                  | Two Lanes Speed | Three Lanes Speed | Four Lanes Speed |
|----------------------------|-----------------|-------------------|------------------|
| Data type = 00 1110 (0Eh), | 566 Mbps        | 433 Mbps          | 366 Mbps         |
| RGB 565, 16 UI per Pixel   | 300 Mbps        | 455 WIDPS         | 300 Mpps         |
| Data type = 01 1110 (1Eh), | 637 Mbps        | 487 Mbps          | 412 Mbps         |
| RGB 666, 18 UI per Pixel   | 657 Mups        | 467 WIDPS         | 412 Wibps        |
| Data type = 10 1110 (2Eh), |                 |                   |                  |
| RGB 666 loosely, 24 UI per | 850 Mbps        | 650 Mbps          | 550 Mbps         |
| Pixel                      |                 |                   |                  |
| Data type = 11 1110 (3Eh), | 850 Mbps        | 650 Mbps          | 550 Mbps         |
| RGB 888, 24 UI per Pixel   | osu iviups      | oso iviops        | Squivi ucc       |

# 3.5.2 High Speed Mode – Data Clock Channel Timing

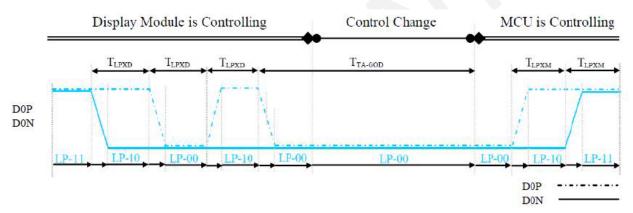


| Signal             | Symbol          | Parameter           | Min     | Max |
|--------------------|-----------------|---------------------|---------|-----|
| DnP/N, n = 0 and 1 | tos             | Data to clock setup | 0.15xUI | -   |
|                    | t <sub>DH</sub> | Clock to data setup | 0.15xUI | -   |

# 3.5.3 High Speed Mode – Rising and Fall Timing




| Parameter                        | Symbol               | Condition         | Min    | Тур | Max   |
|----------------------------------|----------------------|-------------------|--------|-----|-------|
| Differential Rise Time for Clock | tortclk              | CLKP/N            | 150 ps | -   | 0.3UI |
| Differential Rise Time for Data  | t <sub>DRTDATA</sub> | DnP/N n = 0 and 1 | 150 ps | -   | 0.3UI |
| Differential Fall Time for Clock | <b>t</b> DFTCLK      | CLKP/N            | 150 ps | -   | 0.3UI |
| Differential Fall Time for Data  | t <sub>DFTDATA</sub> | DnP/N n = 0 and 1 | 150 ps | -   | 0.3UI |


**Note:** The display module has to meet timing requirements, which are defined for the transmitter (MCU) on MIPI D-Phy standard.

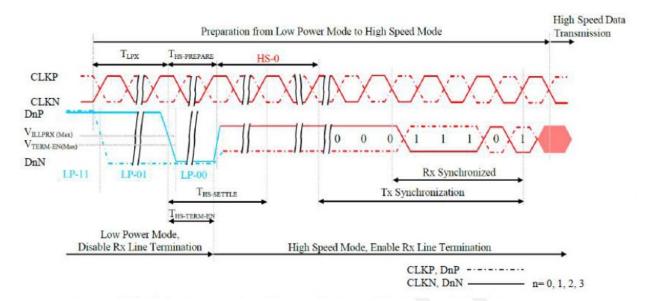
### 3.5.4 Low Speed Mode – Bus Turn Around

Lower Power Mode and its State Periods on the Bys Turnaround (BTA) from the MCU to the Display Module (ILI9881C) are illustrated for reference purposes below.



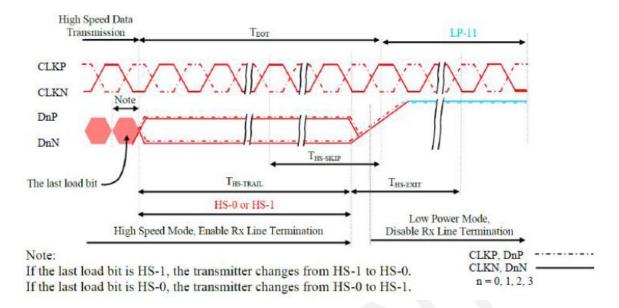
Lower Power Mode and its State Periods on the Bus Turnaround (BTA) from the Display Module (ILI9881C) to the MCU are illustrated for reference purposes below.




Low Power State Period Timings - A

| Signal                  | Symbol                                   | Description                                                  |       | Max     | Unit |
|-------------------------|------------------------------------------|--------------------------------------------------------------|-------|---------|------|
| DOP/N T <sub>LPXM</sub> |                                          | Length of LP-00, LP-10 or LP-11 periods.                     | Ε0.   | 75      |      |
|                         |                                          | MCU→Display Module (ILI9881C)                                | 50    |         | ns   |
| DOP/N T <sub>LPXD</sub> | Length of LP-00, LP-10 or LP-11 periods. | F0.                                                          | 75    |         |      |
|                         | I LPXD                                   | Display Module (ILI9881C) → MCU                              | 50    | 75      | ns   |
| D0P/N                   | T <sub>TA-SURED</sub>                    | Time-out before the Display Module (ILI9881C) starts driving | TLPXD | 2xTLPXD | ns   |

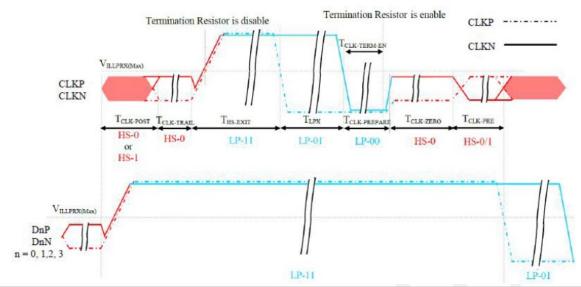
Low Power State Period Timings - B


| Signal | Symbol                | Description                                        | Time                | Unit |
|--------|-----------------------|----------------------------------------------------|---------------------|------|
| DOP/N  | T <sub>TA-GATED</sub> | Time to drive LP-00 by Display Module (ILI9881C)   | 5xT <sub>LPXD</sub> | ns   |
| DOP/N  | $T_{TA-GOD}$          | Time to drive LP-00 after turnaround request – MCU | 4xT <sub>LPXD</sub> | ns   |

# 3.5.5 Low Speed Mode – Bus Turn Around



| Signal       | Symbol                | Description                                         | Min     | Max     | Unit |
|--------------|-----------------------|-----------------------------------------------------|---------|---------|------|
| DnP/N, n = 0 | T <sub>LPX</sub>      | Length of any Low Power State Period                |         | -       | ns   |
| and 1        |                       |                                                     |         |         |      |
| DnP/N, n = 0 | T <sub>HS-</sub>      | Time to drive LP-00 to prepare for HS Transmission  | 40+4xUI | 85+6xUI | ns   |
| and 1        | PREPARE               | Time to drive El do to prepare for its Transmission | 4014701 | 0310001 | 113  |
| DnP/N, n = 0 | T <sub>HS-TERM-</sub> | Time to enable Data Lane Receiver line termination  |         | 35+4xUI | nc   |
| and 1        | EN                    | measured from when Dn crosses VILMAX                | -       | 35+4XUI | ns   |

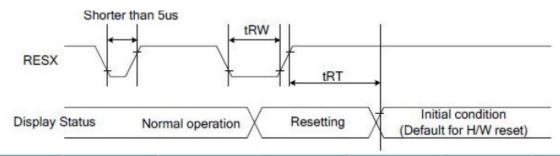

# 3.5.6 Data Lanes from High Power Mode to High Speed Mode



Data Lanes - High Speed Mode to Low Power Mode Timing

| Signal                | Symbol               | Description                                                              | Min | Max     | Unit |
|-----------------------|----------------------|--------------------------------------------------------------------------|-----|---------|------|
| DnP/N, n = 0<br>and 1 | T <sub>HS-SKIP</sub> | Time-Out at Display Module (ILI9881C) to ignore transition period of EoT | 40  | 55+4xUI | ns   |
| DnP/N, n = 0<br>and 1 | T <sub>HS-EXIT</sub> | Time driver LP-11 after HS burst                                         | 100 | -       | ns   |

# 3.5.7 SCI Clock Burst – High Speed Mode to/from Low Power Mode




| Signal | Symbol                       | Description                                                                                                          | Min  | Max | Unit |
|--------|------------------------------|----------------------------------------------------------------------------------------------------------------------|------|-----|------|
| CLKP/N | T <sub>CLK-POST</sub>        | Time that the MCU shall continue sending HS clock after the last associated Data Lanes has transitioned to LP mode   |      | -   | ns   |
| CLKP/N | T <sub>CLK-TRAIL</sub>       | Time to drive HS differential state after last payload clock bit of a HS transmission burst                          |      | -   | ns   |
| CLKP/N | T <sub>HS-EXIT</sub>         | Time to drive LP-11 after HS burst                                                                                   | 100  | -   | ns   |
| CLKP/N | T <sub>CLK-PERPARE</sub>     | Time to drive LP-00 to prepare for HS transmission                                                                   | 38   | 95  | ns   |
| CLKP/N | T <sub>CLK-TERM-EN</sub>     | Time-out at clock Lane to enable HS termination                                                                      | -    | 38  | ns   |
| CLKP/N | TCLK-PREPARE + TCKL-<br>ZERO | Minimum lead HS-0 drive period before starting Clock                                                                 | 300  | -   | ns   |
| CLKP/N | T <sub>CLK-PRE</sub>         | Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode | 8xUI | -   | ns   |

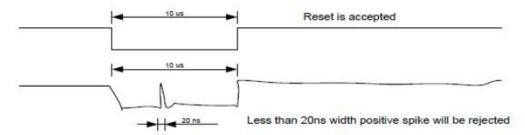
# 3.5.8 Timing for DSI Video Mode

| Parameter                   | Symbol | Min | Тур | Max | Unit  |
|-----------------------------|--------|-----|-----|-----|-------|
| DCLK Frequency              | FCLK   | -   | 29  | -   | MHz   |
| Horizontal Display Area     | HDSIP  | -   | 480 | -   | Clock |
| Horizontal Sync Width       | hpw    | 1   | 4   | -   | Clock |
| Horizontal Sync Back Porch  | hbp    | 1   | 30  | -   | Clock |
| Horizontal Sync Front Porch | hfp    | 1   | 18  | -   | Clock |
| Vertical Display Area       | VDISP  | -   | 854 | -   | Line  |
| Vertical Sync Width         | VS     | 1   | 4   | -   | Line  |
| Vertical Sync Back Porch    | vbp    | 1   | 30  | -   | Line  |
| Vertical Sync Front Porch   | vfp    | 1   | 20  | -   | Line  |
| Frame-Rate                  | -      | -   | 60  | -   | Hz    |

### 3.5.9 Reset Input Timing



| Signal | Symbol          | Parameter               | Min | Max | Unit | Note    |
|--------|-----------------|-------------------------|-----|-----|------|---------|
|        | t <sub>RW</sub> | Reset pulse<br>duration | 10  | -   | us   | -       |
| RESX   |                 | h Decet course          | -   | 5   | ms   | 1, 5    |
|        | t <sub>RT</sub> | Reset cancel            | -   | 120 | ms   | 1, 6, 7 |


**Note 1:** The reset cancel also includes require time for loading ID Bytes, VCOM setting and other setting from EEPROM to registers. This loading is done every time when there is H/W reset cancel time (t<sub>RT</sub>) within 5 ms after a rising edge of RESX.

**Note 2:** Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

| RESX Pulse           | Action         |
|----------------------|----------------|
| Shorter than 5us     | Reset Rejected |
| Longer than 10us     | Reset          |
| Between 5us and 10us | Reset starts   |

**Note 3:** During the Resetting period, the display will be blanked (the display enter the blanking sequence, which maximum time is 120ms, when Reset Starts in the Sleep Out mode. The display remains the blank state in the Sleep In mode) and then return to Default condition for Hardware Reset.

Note 4: Spike Rejection can also be applied during a valid reset pulse, as shown below.



Note 5: When Reset applied during Sleep In mode.

Note 6: When Reset applied during Sleep Out mode.

**Note 7:** It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

# 4. Electrical Specification Touch

### 4.1 Electrical Characteristics

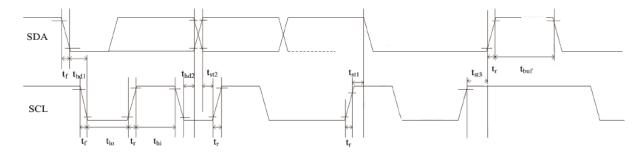
### 4.1.1 Absolute Maximum Rating

| Item                  | Symbol          | Min  | Max  | Unit |
|-----------------------|-----------------|------|------|------|
| Power Supply Voltage  | V <sub>DD</sub> | 2.66 | 3.47 | V    |
| Operating Temperature | T <sub>OP</sub> | -20  | +70  | °C   |
| Storage Temperature   | T <sub>ST</sub> | -30  | +80  | °C   |

### 4.1.2 DC Electrical Characteristics

(Ta=25°C, VDD=2.8V, VDDIO=1.8V or VDDIO=VDD)

| Item                          | Symbol | Min      | Тур  | Max      | Unit |
|-------------------------------|--------|----------|------|----------|------|
| Power Supply Voltage          | VDD    | 2.66     | 3.3  | 3.47     | V    |
| Normal Mode Operating Cueernt | -      | -        | 8    | 14.5     | mA   |
| Green Mode Operating Cueernt  | -      | -        | 3.3  | -        | mA   |
| Sleep Mode Operating Cueernt  |        | 70       | -    | 120      | uA   |
| Doze Mode Operating Cueernt   |        | -        | 0.78 | -        | mA   |
| Digital Input Low Voltage     | VIL    | -0.3     | -    | 0.25 VDD | V    |
| Digital Input High Voltage    | ViH    | 0.75 VDD | -    | VDD +0.3 | V    |
| Digital Output Low Voltage    | VoL    | -        | -    | 0.15VDD  | V    |
| Digital Output High Voltage   | Vон    | 0.85 VDD | -    | -        | V    |


### 4.1.3 AC Characteristics

(Ta=25°C, VDD=2.8V, VDDIO=1.8V)

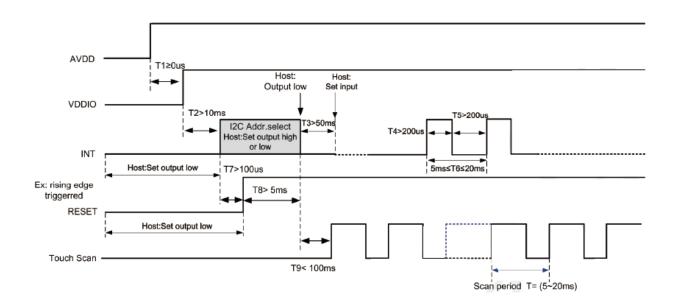
| Parameter                         | Min | Тур | Max | Unit |
|-----------------------------------|-----|-----|-----|------|
| OSC Oscillation Frequency         | 59  | 60  | 61  | MHz  |
| I/O Output Rise Time, Low to High | -   | 14  | -   | ns   |
| I/O Output Fall Time, High to Low | -   | 14  | -   | ns   |

# 4.2 I<sup>2</sup>C Timing

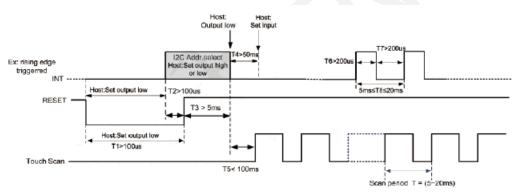
GT911 provides a standard I2C interface for SCL and SDA to communicate with the host. GT911 always serves as slave device in the system with all communication being initialized by the host. It is strongly recommended that transmission rate be kept at or below 400Kbps. The I<sup>2</sup>C timing is shown below.



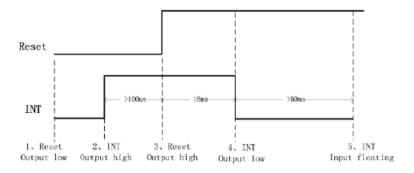
Test condition 1: 1.8V host interface voltage, 400Kbps transmission rate, 2K pull-up resistor.


| Parameter                          | Symbol           | Min | Max | Unit |
|------------------------------------|------------------|-----|-----|------|
| SCL Low Period                     | T <sub>lo</sub>  | 1.3 | -   | us   |
| SCL High Period                    | t <sub>hi</sub>  | 0.6 | -   | us   |
| SCL Setup time for Start Condition | t <sub>st1</sub> | 0.6 | -   | us   |
| SCL Setup Time for Stop Condition  | t <sub>st3</sub> | 0.6 | -   | us   |
| SCL Hold Time for Start Condition  | t <sub>hd1</sub> | 0.6 | -   | us   |
| SDA Setup Time                     | t <sub>st2</sub> | 0.1 | -   | us   |
| SDA Hold Time                      | t <sub>hd2</sub> | 0   | -   | us   |

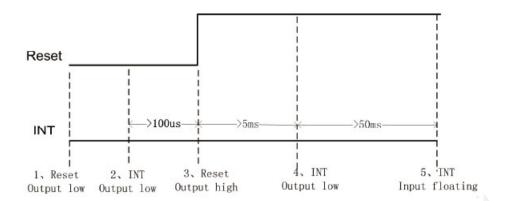
Test condition 2: 3.3V host interface voltage, 400Kbps transmission rate, 2K pull-up resistor.


| Parameter                          | Symbol           | Min | Max | Unit |
|------------------------------------|------------------|-----|-----|------|
| SCL Low Period                     | Tlo              | 1.3 | -   | us   |
| SCL High Period                    | thi              | 0.6 | -   | us   |
| SCL Setup time for Start Condition | t <sub>st1</sub> | 0.6 | -   | us   |
| SCL Setup Time for Stop Condition  | t <sub>st3</sub> | 0.6 | -   | us   |
| SCL Hold Time for Start Condition  | t <sub>hd1</sub> | 0.6 | -   | us   |
| SDA Setup Time                     | t <sub>st2</sub> | 0.1 | -   | us   |
| SDA Hold Time                      | t <sub>hd2</sub> | 0   | -   | us   |

GT911 supports two I2C slave addresses: 0xBA/0xBB and 0x28/0x29. The host can select the address by changing the status of Reset and INT pins during the power-on initialization phase. See the diagram below for configuration methods and timings.


#### **Power-on Timing**




#### Time for host resetting GT911



#### Time for setting address to 0x28/0x29



Timing for setting slave address to 0xBA/0xBB



#### a) Data Transmission

(For example, device address is 0xBA/0xBB)

Communication is always initiated by the host. Valid Start condition is signaled by pulling SDA line from "high" to "low" when SCL line is "high". Data flow or address is transmitted after the Start condition.

All slave devices connected to I<sup>2</sup>C bus should detect the 8-bit address issued after Start condition and send to correct ACL. After receiving matching address, GT911 acknowledges by configuring SDA line as output port and pulling SDA line low during the ninth SCL cycle. When receiving unmatched address, namely, not 0xBA or 0xBB, GT91 will stay in an idle state.

For data bytes on SDA, each of 9 serial bits will be sent on nine SCL cycles. Each data bytes consists of 8 valid data bits and one ACK or NACK bit sent by the recipient. The data transmission is valid when SCL line is "high".

When communication is completed, the host will issue the STOP condition. Stop condition implies the transition of SDA line from "low" to "high" when SCL line is "high".

#### b) Writing Data to GT911

(For example, device address is 0xBA/0xBB)

#### **Timing for Write Operation**



The diagram above displays the timing sequence of the host writing data onto GT911. First, the host issues a Start condition. Then, the host sends 0xBA (address hits and R/W bit, R/W bit as 0 indicates Write operation) to the slave device.

After receiving ACK, the host sends the 16-bit register address (where writing starts) and the 8-bit data bytes (to be written onto the register).

The location of the register address pointer will automatically add 1 after every Write Operation Therefore, when the host needs to perform Write Operations on a group of registers of continuous addresses, it is able to write continuously. The Write Operation is terminated when the host issues the Stop condition.

c) Reading Data from GT911

(For example, device address is 0xBA/0xBB)

#### **Timing for Read Operation**



The diagram above displays the timing sequence of the host reading data from GT911. First, the host issues a Start condition and sends 0xBA (address hits and R/W bit, R/W bit as 0 indicates Write operation) to the slave device.

After receiving ACK, the host sends the 16-bit register address (where reading starts) to the slave device. Then the host sets register addresses which need to be read.

Also after receiving ACK, the host issues the Start condition once again and sends 0xBB (Read Operating). After ACK, the host start to read data.

GT911 also supports continuous Read Operation and, by default, reads data continuously. Whenever receiving a byte of data, the host sends an ACK signal indicating successful reception. After receiving the last byte of data, the host sends a NACK signal followed by a STOP condition which terminates communication.

# 5. Optical Specification

# 5.1 Optical Characteristics

| Chara               | cteristics | Symbol                          | Conditions           | Min   | Тур.  | Max   | Unit              | Note   |
|---------------------|------------|---------------------------------|----------------------|-------|-------|-------|-------------------|--------|
| Contra              | ast Ratio  | CR                              | θ = 0°               | 600   | 1000  | -     | -                 | 1, 2   |
| Respo               | nse time   | T <sub>R</sub> + T <sub>F</sub> | Normal viewing angle | -     | 16    | 21    | msec              | 1, 3   |
| Color               | Gamut      | S(%)                            | -                    | -     | 62    | -     | %                 | -      |
| <u>e</u>            | Left       | θι                              |                      | -     | 80    | -     |                   |        |
| Viewing Angle       | Right      | $\theta_{R}$                    | CR≧10                | -     | 80    | -     |                   | 1, 4   |
| ewin                | Up         | θυ                              | CN≦10                | -     | 80    | -     |                   | 1,4    |
|                     | Down       | θр                              |                      | -     | 80    | -     |                   |        |
|                     | Red        | Rx                              |                      | 0.602 | 0.642 | 0.682 |                   |        |
|                     | neu -      | Ry                              |                      | 0.306 | 0.346 | 0.386 | -                 |        |
| icity               | Green      | Gx                              |                      | 0.280 | 0.320 | 0.360 | _                 |        |
| Colour Chromaticity | Oreen.     | Gy                              | $\theta$ = 0°        | 0.576 | 0.616 | 0.656 | _                 | 1, 4   |
| lour C              | Blue       | Вх                              | viewing angle        | 0.102 | 0.142 | 0.182 |                   | CA-310 |
| 8                   | Dide       | Ву                              |                      | 0.039 | 0.079 | 0.119 | -                 |        |
|                     | White      | Wx                              |                      | 0.250 | 0.290 | 0.330 |                   |        |
|                     | wnite      | Wy                              |                      | 0.282 | 0.322 | 0.362 |                   |        |
| Lum                 | inance     | Lv                              | -                    | 310   | 360   | -     | cd/m <sup>2</sup> | 5      |
| Unif                | ormity     | Avg                             | -                    | 80    | -     | -     | %                 | 5      |

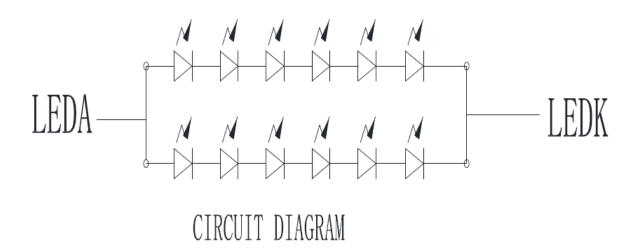
**Note:** Measuring Condition = in dark room, at ambient temperature 25±2°C, for 15min. warm-up time.

| Note | ltem                                 | Test method                                                                                                  |
|------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1    | Definition of<br>Viewing Angle       | $\Phi$ = 180° $\Phi$ = 0° $\Phi$ = 270°                                                                      |
| 2    | Definition of<br>Contrast Ratio (CR) | measured at the center point of panel  Luminance with all pixels white  CR = Luminance with all pixels black |
| 3    | Definition of<br>Response Time       | Display data SBlack (TFT OFF) White (TFT ON) Black (TFT OFF) S  Optical Response 90% 10% 0%                  |

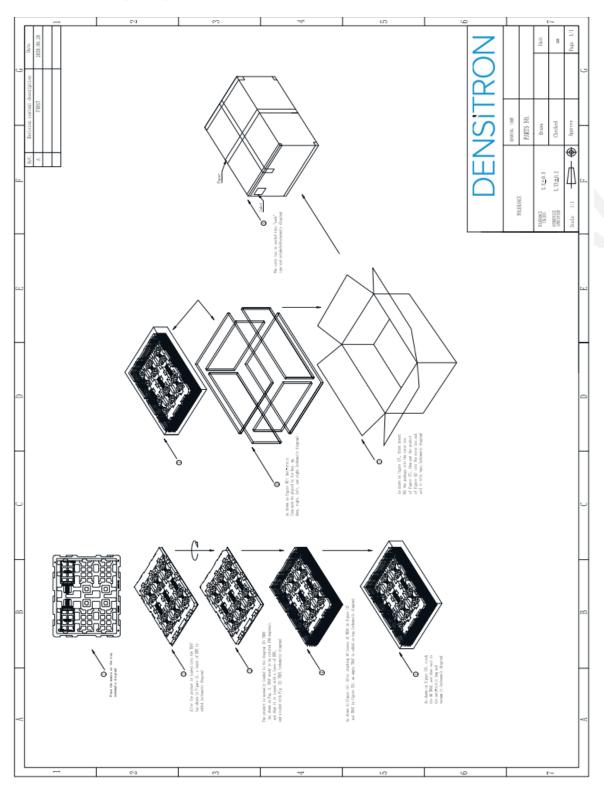
| Note | ltem                                       | Test method                                                                                                                                                                                        |
|------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4    | Definition of optical<br>measurement setup | Photo-detector (BM-5A)  50cm  Center of panel                                                                                                                                                      |
| 5    | Definition of<br>Luminance Uniformity      | Luminance Uniformity of these 9 points is defined as below  The second of these 9 points is defined as below  Uniformity = minimum luminance in 9 points (1-9) maximum luminance in 9 points (1-9) |

# 6. LED Backlight Specification

# 6.1 LED Backlight Characteristics


The back-light system is edge-lighting type with 12 chips LED.

| Item            | Symbol         | Min   | Тур. | Max | Unit | Note |
|-----------------|----------------|-------|------|-----|------|------|
| Forward Current | I <sub>F</sub> | 30    | 40   | -   | mA   | -    |
| Forward Voltage | V <sub>F</sub> | -     | 19.2 | -   | V    | -    |
| LED Lifetime    | Hr             | 50000 | -    | -   | Hrs  | 1, 2 |


**Note 1:** LED life time (Hr) can be defined as the time in which it continues to operate under the condition:  $Ta = 25\pm3^{\circ}C$ , typical IL value indicated in the above table until the brightness becomes less than 50%.

**Note 2:** The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta = 25°C and IL = 40mA. The LED lifetime could be decreased if operating IL is larger than 40mA. The constant current driving method is suggested.

### 6.2 Internal Circuit Diagram



# 7. Packaging



# 8. Quality Assurance Specification

# 8.1 Conformity

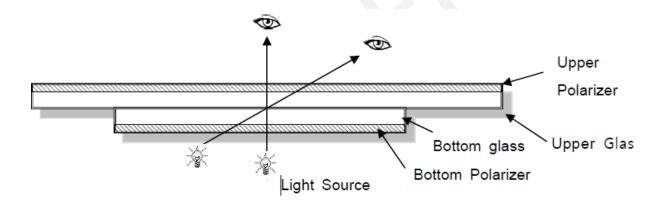
The performance, function and reliability of the shipped products conform to the Product Specification.

### 8.2 Environment Required

Customer's test & measurement are required to be conducted under the following conditions:

Temperature:  $25 \pm 5^{\circ}$ C

Humidity:  $65\% \pm 10\% \text{ RH}$ 


Viewing Angle: Normal viewing angle

Illumination: 300 to 700 Lux (Single fluorescent lamp)

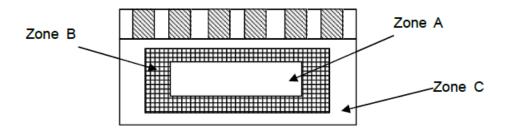
Viewing distance: 30 to 50cm

Finger glove (or finger cover) must be worn by the inspector.

Inspection table or jig must be anti-electrostatic.



### 8.3 Delivery Assurance


### 8.3.1 Delivery Inspection Standards

Class II, Normal Inspection, ISO2859-1

### 8.3.2 Criteria & Acceptable Quality Level

| Classification of defects | AQL  |
|---------------------------|------|
| Major                     | 0.65 |
| Minor                     | 1.5  |

### 8.3.3 Zone Definition

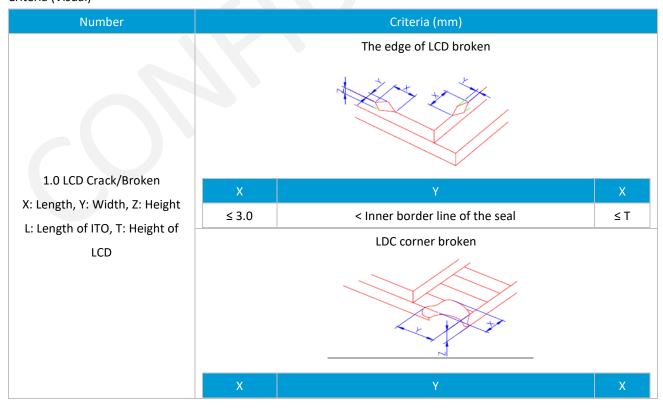


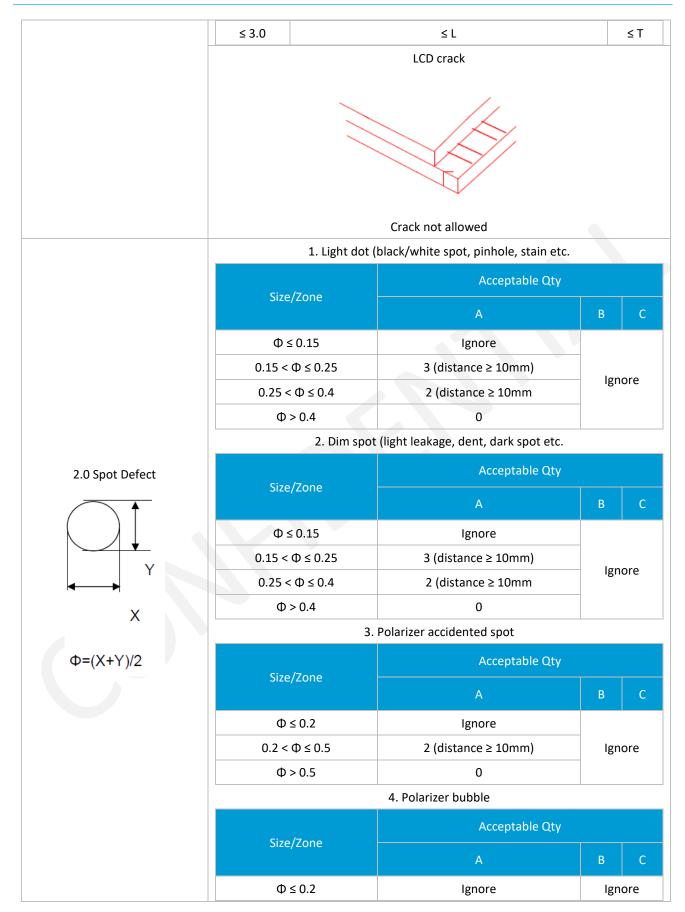
Zone A: Effective Viewing Area (Character or Digit can be seen)

Zone B: Viewing Area except Zone A

Zone C: Outside (Zone A+Zone B) which cannot be seen after assembly by customer.)

Note: As a general rule, visual defects in Zone C can be ignored when it doesn't affect product function or appearance after assembly by customer.


### 8.3.4 Criteria & Classification


| No | Items                   | Criteria                                                                                                                                   | Classification of defects |
|----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1  | Functional Defects      | <ol> <li>No display, Open or miss line</li> <li>Display abnormally, Short</li> <li>Backlight no lighting, abnormal lighting ect</li> </ol> | Maion                     |
| 2  | Missing                 | Missing components and ect                                                                                                                 | Major                     |
| 3  | Outline Dimension       | Overall outline dimension beyond the drawing is not allowed, deformation and etc                                                           |                           |
| 4  | Color Tone              | Color unevenness refer to limited sample                                                                                                   |                           |
| 5  | Spot/Line Defect        | Light dot, Dim spot, Polarizer Air Bubble, Polarizer accidented spot and etc                                                               | Minar                     |
| 6  | Soldering<br>Appearance | Good soldering, Peeling off is not allowed and etc                                                                                         | Minor                     |
| 7  | LDC/Polarizer/CTP       | Black/White spot/line, scratch, crack etc                                                                                                  |                           |

Note1: a) Light dot Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.

b) Dim dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue picture.

#### Criteria (Visual)





|                                                             | 0.2          | < Φ ≤ 0.4                  | 2 (distance ≥ 2                                                              | 10mm)           |                   |
|-------------------------------------------------------------|--------------|----------------------------|------------------------------------------------------------------------------|-----------------|-------------------|
|                                                             | 4            | D > 0.4                    | 0                                                                            |                 |                   |
|                                                             |              |                            | Pixel bad points                                                             |                 |                   |
|                                                             | Item         |                            | Zone A                                                                       |                 | Acceptable<br>Qty |
|                                                             |              |                            | Radom                                                                        |                 | N ≤ 2             |
|                                                             | Bright       |                            | 2 dots adjacent                                                              |                 | N ≤ 0             |
|                                                             | dot          |                            | 3 dots adjacent                                                              |                 | N ≤ 0             |
|                                                             |              |                            | Radom                                                                        |                 | N ≤ 3             |
|                                                             | Dark dot     |                            | 2 dots adjacent                                                              |                 | N ≤ 0             |
|                                                             |              |                            | 3 dots adjacent                                                              |                 | N ≤ 0             |
|                                                             | Distance     | 2. Minimum di              | stance between bright of<br>stance between dark do<br>stance between dark ar | ots             | 5mm               |
|                                                             |              | Total bright and dark dots |                                                                              |                 | N ≤ 4             |
|                                                             | Note 2: Dark |                            | ar dark and unchanged i<br>een, blue picture.                                | n size in which | LCD panel is      |
|                                                             | 2 do         | ot adjacent                | :                                                                            | 2 dot a         | djacent           |
|                                                             |              |                            |                                                                              |                 |                   |
|                                                             | 2 dot a      | adjacent (v                | ertical)                                                                     | 2 dot ad        | djacent (s        |
|                                                             |              |                            |                                                                              | Accept          |                   |
| 4.0 Line Defect (LCD /Polarizer                             | Wid          | th (mm)                    | Length (mm)                                                                  | А В             | able Qty<br>C     |
| 4.0 Line Defect (LCD /Polarizer backlight black/white line, |              | th (mm)<br>≤ 0.05          | Length (mm)  Ignore                                                          | A B Ignore      |                   |
| •                                                           | W            |                            |                                                                              |                 |                   |

|                                | W > 0.08                       |                                                  | Defined a             | as spot defect | t              |      |
|--------------------------------|--------------------------------|--------------------------------------------------|-----------------------|----------------|----------------|------|
| $\overline{\Phi}$              | V                              |                                                  |                       |                |                |      |
| W: width, L: length            |                                |                                                  |                       |                |                |      |
| N: Count                       |                                |                                                  |                       |                |                |      |
| 5.0 Electronic Components      | Not allow missing parts, sol   | derless con                                      | nection, cold         | solder joint   | , mismatch,    | the  |
| SMT.                           | positive and negative polarity | opposite.                                        |                       |                |                |      |
|                                | 1. Color: Measuring the color  | coordinates                                      | , The measur          | rement stand   | ard accordin   | g to |
| 6.0 Display color & Brightness | the datasheet or samples.      |                                                  |                       |                |                |      |
| olo bispiay color a brightness | 2. Brightness: Measuring the   | ne brightne                                      | ss of White           | screen, The    | e measurem     | ent  |
|                                | standard according to the da   | tasheet or Sa                                    | amples.               |                |                |      |
| 7.0 LCD Mura/Waving/Hot spo    | t Not visible through 5% ND fi | lter in 50% g                                    | ray or judge          | by limit samp  | ole if necessa | ıry. |
|                                | 1. CTP Cove                    | r sensor acci                                    | dented black          | c/white spot   |                |      |
|                                |                                |                                                  | Acce                  | ptable Qty     |                |      |
|                                | Size (mm)                      |                                                  | A                     |                | В              |      |
|                                | Φ ≤ 0.15                       | Ignore                                           |                       |                |                |      |
|                                | 0.15 < Φ ≤ 0.25                | 4 (distance ≥ 10                                 |                       | Omm)           |                |      |
|                                | 0.25 < Φ ≤ 0.35                | 3 (distance ≥ 10                                 |                       | .0mm)          |                |      |
|                                | Φ > 0.35                       | 0                                                |                       |                |                |      |
|                                |                                | 2. CTP Co                                        | ver Strach            |                |                |      |
|                                | Width (mm)                     | Lengt                                            | n (mm)                |                | table Qty      |      |
|                                | W ≤ 0.05                       |                                                  |                       | A              | B C            |      |
| 8.0 CTP Related                | W ≤ 0.05<br>0.05 < W ≤ 0.06    |                                                  | ore                   |                | Ignore         |      |
|                                | $0.05 < W \le 0.08$            |                                                  | 3.0                   |                | V ≤ 3          | -    |
|                                |                                | LS                                               |                       |                | N ≤ 2          |      |
|                                | W > 0.08                       | TD Cover Din                                     | hole/ Lack of         | as spot defect |                |      |
|                                | Size                           | TP Cover Pin                                     |                       |                | alo Oty        |      |
|                                |                                |                                                  | C zone acceptable Qty |                |                |      |
|                                | Φ≤0.2                          |                                                  | 4                     | Ignore         | 0,,)           | _    |
|                                | 0.2 < Φ ≤ 0.3                  |                                                  | 4 (distance ≥ 10mm)   |                |                | _    |
|                                | 0.3 < Φ ≤ 0.4                  |                                                  |                       | (distance ≥ 10 | omm)           | _    |
|                                |                                | Φ > 0.4 0  4. CTP Bonding bubble/accidented spot |                       |                |                |      |
|                                | 4. CIP I                       | outuing bub                                      |                       |                |                |      |
|                                | Size Φ (mm)                    |                                                  |                       | table Qty      |                |      |
|                                |                                | 1                                                | 4                     |                | В              |      |

|  | Φ ≤ 0.1                                                                              | Igno                | ore                 |
|--|--------------------------------------------------------------------------------------|---------------------|---------------------|
|  | 0.1 < Φ ≤ 0.2                                                                        | 3 (distance         | e ≥ 10mm)           |
|  | 0.2 < Φ ≤ 0.3                                                                        | 2 (distance ≥ 10mm) |                     |
|  | Ф > 0.3                                                                              | 0                   |                     |
|  | 5. Assembly deflection                                                               |                     |                     |
|  | beyond the edge of backlight ≤ 0.2mm  6. CTP cover broken                            |                     |                     |
|  |                                                                                      |                     |                     |
|  | X: length, Y: width, Z: height                                                       |                     |                     |
|  | Х                                                                                    | Υ                   | Z                   |
|  | X ≤ 0.5mm                                                                            | Y ≤ 0.5mm           | Z < cover thickness |
|  | Circuitry broken is not allowed  7. CTP cover broken  X: length, Y: width, Z: height |                     |                     |
|  | Circuitry broken is not allowed                                                      |                     |                     |

#### Criteria (functional items)

| No | Items           | Criteria (mm) |
|----|-----------------|---------------|
| 1  | No display      | Not allowed   |
| 2  | Missing segment | Not allowed   |
| 3  | Short           | Not allowed   |
| 4  | Backlight       | Not allowed   |
| 5  | CTP no function | Not allowed   |

### 8.4 Dealing with Customer Complaints

# 8.4.1 Non-conforming Analysis

Purchaser should supply Densitron with detailed data of non-conforming sample.

After accepting it, Densitron should complete the analysis in reasonable time and update the status to the purchaser.

### 8.4.2 Handling of Non-conforming Displays

If any non-conforming displays are found during customer acceptance inspection which Densitron is clearly responsible for, return them to Densitron.

Both Densitron and customer should analyse the reason and discuss the handling of non-conforming displays when the reason is not clear.

Equally, both sides should discuss and come to agreement for issues pertaining to modification of Densitron quality assurance standard.

# 9. Reliability Specification

# 9.1 Reliability Tests

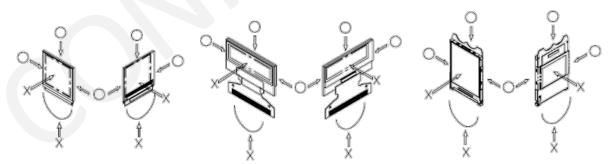
| Test Item                     | Test Condition                                                                                                                                  | Evaluation and assessment                                                                                                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Temperature Operation    | 70°C, 96 hours                                                                                                                                  | Inspection after 2~4hours storage at room temperature, the sample shall be free from defects: 1.Air bubble in the LCD. 2.Non-display. 3.Missing segments/line. 4.Glass crack. 5.Current IDD is twice higher |
| Low Temperature Operation     | -20°C, 96 hours                                                                                                                                 |                                                                                                                                                                                                             |
| High Temperature Storage      | 80°C, 96 hours                                                                                                                                  |                                                                                                                                                                                                             |
| Low Temperature Storage       | -30°C, 96 hours                                                                                                                                 |                                                                                                                                                                                                             |
| Damp Proof Test               | 60°C, 90%RH, 96 hours                                                                                                                           |                                                                                                                                                                                                             |
| Thermal Shock (Non-operation) | -20°C, 30 min ↔ 70°C, 30 min, Change time:5min 20CYC.                                                                                           |                                                                                                                                                                                                             |
| ESD test                      | C=150pF, R=330, 5points/panel Air: $\pm$ 8KV, 5times; Contact: $\pm$ 6KV, 5 times. (Environment: 15°C ~35°C, 30% ~ 60%).                        |                                                                                                                                                                                                             |
| Vibration (Non-operation)     | Frequency range: 10~55Hz, Stroke: 1.5mm  Sweep:10Hz ~ 55Hz ~ 10Hz, 2 hours for each direction of X.Y.Z. (6 hours for total) (Package condition) |                                                                                                                                                                                                             |
| Box Drop Test                 | 1 Corner 3 Edges 6 faces,80cm (MEDIUM BOX)                                                                                                      |                                                                                                                                                                                                             |

Note 1: The test samples should be applied to only one test item.

Note 2: Sample size for each test item is 5~10pcs.

**Note 3:** For Damp Proof Test, Pure water(Resistance >  $10M\Omega$ ) should be used.

**Note 4:** In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judged as a good part.


**Note 5:** Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

Note 6: The color fading mura of polarizing filter should not care.

# 10. Handling Precautions

### 10.1 Handling Precautions

- 1) Since the display panel is made of glass, do not apply mechanical impacts such us dropping from a high position.
- 2) If the display panel is broken by accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- 3) If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of water
- 4) If pressure is applied to the display surface or its neighbourhood of the display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- 5) The polarizer covering the surface of the display module is soft and easily scratched. Please be careful when handling the display module.
- 6) When the surface of the polarizer of the display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
  - a. Scotch Mending Tape No. 810 or an equivalent
  - b. Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.
  - c. Also, pay attention that the following liquid and solvent may spoil the polarizer:
    - Water
    - Ketone
    - Aromatic Solvents
- 7) Hold the display module very carefully when placing it into the system housing. Do not apply excessive stress or pressure to display module. And, do not over bend the film with electrode pattern layouts. These stresses will



influence the display performance. Also, secure sufficient rigidity for the outer cases.

- 8) Do not apply stress to the LSI chips and the surrounding molded sections.
- 9) Do not disassemble nor modify the display module.
- 10) Do not apply input signals while the logic power is off.
- 11) Pay sufficient attention to the working environments when handing display modules to prevent occurrence of element breakage accidents by static electricity.
  - a. Be sure to make human body grounding when handling display modules.

- b. Be sure to ground tools to use or assembly such as soldering irons.
- c. To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- d. Protective film is being applied to the surface of the display panel of the display module. Be careful since static electricity may be generated when exfoliating the protective film.
- 12) A Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. If the display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).
- 13) If electric current is applied when the display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

### **10.2 Storage Precautions**

- 1) When storing display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps, etc. and, also, avoiding high temperature and high humidity environments or low temperature (less than 0°C) environments. (We recommend you store these modules in the packaged state when they are shipped from Densitron) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- 2) If electric current is applied when water drops are adhering to the surface of the display module, when the display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

### 10.3 Designing Precautions

- The absolute maximum ratings are the ratings which cannot be exceeded for display module, and if these values are exceeded, panel damage may happen.
- 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
- 3) We recommend you install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)
- 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighbouring devices.
- 5) As for EMI, take necessary measures on the equipment side basically.
- 6) When fastening the display module, fasten the external plastic housing section.
- 7) If power supply to the display module is forcibly shut down by such errors as taking out the main battery while the display panel is in operation, we cannot guarantee the quality of this display module.

### 10.4 Operation Precautions

- 1) It is indispensable to drive the display within the specified voltage limit since excessive voltage shortens its life.
- 2) Direct current causes an electrochemical reaction with remarkable deterioration of the display quality. Give careful consideration to prevent direct current during ON/OFF timing and during operation.
- 3) Response time is extremely delayed at temperatures lower than the operating temperature range while, at high temperatures, displays become dark. However, this phenomenon is reversible and does not mean a malfunction or a display that has been permanently damaged.
- 4) To protect display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the display modules.
  - a. Pins and electrodes
  - b. Pattern layouts such as the FPC
- 5) When the driver is being exposed (COG), semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if the driver is exposed to light, malfunctioning may occur.
  - a. Design the product and installation method so that the driver may be shielded from light in actual usage.
  - b. Design the product and installation method so that the driver may be shielded from light during the inspection processes.
- 6) Although the display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from the influences of noise on the system design.
- 7) We recommend you construct its software to make periodical refreshments of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.

### 10.5 Cleaning Precautions

- 1) Keep TFT Scratch free: Avoid using abrasive materials like paper towels and newspaper in cleaning TFT LCD screens as they may scratch the surface. Instead, opt for a lint-free cloth. Don't spray the liquid directly on the monitor and remember to put gentle pressure when wiping the screen.
- 2) Avoid Vibration: During cleaning process, try to keep the TFT on shock proof platform to avoid strong shock and vibration. Do not apply pressure to the LCD screen of the LCD or bump or squeeze the LCD display back cover.
- 3) When the surface of the polarizer of the display module has soil, clean the surface. It takes advantage of using the following adhesion tape:
  - a) Scotch Mending Tape No. 810 or an equivalent.
  - b) Never try to breathe upon the soiled surface.
  - c) List of Safe and Unsafe solvents to clean TFT display:

| Safe Solvents                                                         | Unsafe Solvents |  |
|-----------------------------------------------------------------------|-----------------|--|
| Distilled Water                                                       | Ammonia         |  |
| Isopropyl Alcohol                                                     | Acetone         |  |
| Diluted White Vinegar = Water (Mix 1 part vinegar + 5 parts of Water) | Ethyl Alcohol   |  |
|                                                                       | Methyl Chloride |  |
|                                                                       | Ethyl Acid      |  |

### 10.6 Other Precautions

1) Request the qualified companies to handle industrial wastes when disposing of the display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.