DMT068WVHTNT0-1A PRODUCT SPECIFICATION

Version 0.1 Nov 07, 2023

TBD

Customer's Approval				
<u>Signature</u>	<u>Date</u>			

Prepared by *Yvette Hsieh* Approved by *Eric Wan*

Revision History

VERSION	DATE	DESCRIPTION	AUTHOR
0.1	Nov 07, 2023	Preliminary	Yvette Hsieh

Legal Notice

Copyright ©2023 Densitron

All information contained in this document is proprietary and confidential to Densitron and is subject to a nondisclosure agreement. Unauthorized use, duplication, modification or disclosure of this information by any means without prior consent of Densitron is prohibited.

Every effort has been made to ensure the accuracy of this document; however, Densitron accepts no responsibility for any inaccuracies, errors or omissions herein. Densitron reserves the right to change specifications without prior notice in its absolute discretion, to supply the best product possible. Where Densitron or any of its group companies has (i) made a change to a product to incorporate a specific customer requirement or (ii) has created a design to a customer's specific requirements, in either case the customer will indemnify and hold the relevant Densitron entity harmless against any claim that delivery against such requirement breaches any intellectual property or other rights of any 3rd party.

All brands and trademarks are the property of their respective owners and are hereby fully acknowledged.

TFT LCD Module

Table of Contents

1. G	ENERAL D	ESCRIPTION	5
	1.1	Introduction	5
	1.2	Main Features	5
2.	MECHAN	NICAL SPECIFICATION	6
	2.1	Mechanical Characteristics	6
	2.2	Mechanical Drawing	7
3.	ELECTRIC	CAL SPECIFICATION	8
	3.1	Absolute Maximum Ratings	8
	3.2	DC Electrical Characteristics	8
	3.3	Interface Pin Assignment	9
	3.4	Timing Characteristics	11
4.	OPTICAL	SPECIFICATION	.15
	4.1	Optical Characteristics	15
5.	LED BAC	KLIGHT SPECIFICATION	.18
	5.1	LED Driver Electrical Characteristics	18
	5.2	Internal Circuit Diagram	18
6.	PACKAG	ING	.19
7.	QUALITY	ASSURANCE SPECIFICATION	.20
	7.1	Conformity	20
	7.2	Environment Required	20
	7.3	Delivery Assurance	21
	7.4	Dealing with Customer Complaints	26
8.	RELIABIL	ITY SPECIFICATION	.27
	8.1	Reliability Tests	27
9.	HANDLIN	NG PRECAUTIONS	.28
	9.1	Handling Precautions	28
	9.2	Storage Precautions	29
	9.3	Designing Precautions	29
	9.4	Operation Precautions	29

TFT LCD Module

9.5	Cleaning Precautions	30
9.6	Other Precautions	31

1. General Description

1.1 Introduction

This is a 6.8" size colour active matrix TFT LCD module that uses amorphous silicon TFT as a switching device. The display is normally black mode, transmissive, and featuring high contrast and excellent colour saturation. The resolution of the TFT-LCD is 800 x 480 and can display up to 16.7M colours. The display module supports 24-bit RGB interface.

1.2 Main Features

Item	Contents
Display Type	TFT LCD
Screen Size	6.8" Diagonal
Display Format	800 x RGB x 480 Dots
No. of Colour	16.7M
Overall Dimensions	156.10 (W) x 100.91 (H) x 5.50 (D) mm
Active Area	148.1040 (W) x 88.8624 (H) mm
Mode	Normally Black / Transmissive
Surface Treatment	Anti-Glare (3H)
Viewing Direction	All round
Interface	24-bit RGB
Driver IC	TBD
Backlight	LDE, White, 24 chips
Operating Temperature	-30°C ~ 85°C
Storage Temperature	-35°C ~ 85°C
ROHS	Compliant to RoHS 2.0

2. Mechanical Specification

2.1 Mechanical Characteristics

Item	Characteristic	Unit	
Display Format	800 x RGB x 480	Dots	
Overall Dimensions	156.10 (W) x 100.91 (H) x 5.50 (D)	mm	
Active Area	148.1040 (W) x 88.8624 (H)	mm	
Dot Pitch	0.18513 (W) x 0.18513 (H)	mm	
Weight	133	g	
Driver IC	TBD		

TFT LCD Module

2.2 Mechanical Drawing

3. Electrical Specification

3.1 Absolute Maximum Ratings

3.1.1 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Digital Supply Voltage	V _{DD}	-0.3	4.0	V
Operating Temperature	Тор	-30	+85	°C
Storage Temperature	T _{ST}	-35	+85	°C

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: Please refer to RELIABILITY.

3.2 DC Electrical Characteristics

3.2.1 Recommended Operating Condition

ltem	Symbol	Min	Тур.	Max	Unit
Digital Supply Voltage	DV _{DD}	3.1	3.1 3.3		V
Normal Mode Current	I _{DD}	-	40	80	mA
	Vін	0.7 DV _{DD}	-	DV _{DD}	V
Level input voltage	VIL	GND	-	$0.3 \text{ DV}_{\text{DD}}$	V
	V _{OH}	$DV_{DD} - 0.4$	-	VDD	V
Level Output Voltage	Vol	GND	-	GND + 0.4	V

TFT LCD Module

3.3 Interface Pin Assignment

No.	Symbol	Function	I/O
1-2	VLED+	Power for LED backlight (Anode)	Р
3-4	VLED-	Power for LED backlight (Cathode)	Р
5	GND	Power ground	Р
6	NC	No connection	-
7	DVDD	Power for digital circuit	Р
8	MODE	DE/SYNC mode select	I
9	DE	Data input enable	I
10	VS	Vertical sync input	1
11	HS	Horizontal sync input	I
12-19	В7-ВО	Blue data	I/O
20-27	G7-G0	Green data	I/O
28-35	R7-R0	Red data	I/O
36	GND	Power ground	Р
37	DCLK	Sample clock	I
38	GND	Power ground	Р
39	L/R	Left/right selection	I
40	U/D	Up/down selection	I
41-43	NC	No connection	-
44	RESET	Global reset pin	I
45-47	NC	No connection	-
48	GND	Power ground	Р
49-50	NC	No connection	-

I: Input, O: Output, P: Power

Note 1: DE/SYNC mode select. Normal pull high.

When select DE mode, Mode = "1", VS and HS must pull high.

When select SYNC mode, Mode = "0", DE must be grounded.

Note 2: When input 18 bits RGB data, the two low bits of R, G and B data must be grouned.

Note 3: Data shall be latched at the falling edge of DCLK.

Note 4: Selection of scanning mode.

Setting of scar	n control input	Scanning direction		
U/D	L/R			
GND	DV _{DD}	Up to down, left to right		
DV _{DD}	GND	Down to up, right to left		

TFT LCD Module

Setting of scan control input		Scapping direction	
U/D	L/R	scanning direction	
GND	GND	Up to down, right to left	
DV _{DD}	DV _{DD}	Down to up, eft to right	

Note 5: Definition of scanning direction refer to the figure as below.

Note 6: Global reset pin. Active low to enter reset state. Suggest connecting with an RC reset circuit for stability. Normally pull high.

3.4 Timing Characteristics

3.4.1 AC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Note
VDD Power Source Slew Time	TPOR	-	-	20	ms	From 0V to 9% VDD
GRB Pulse Width	tRSTW	10	50	-	us	R = 10Kohm, C = 1uF
SD Qutput Stable Time	Tst	-	-	12	us	Output settled within +20mV.
SD Output Stable Time						Loading = 6.8K + 28.2pF
CD Output Biss and Fall Time	Tgst	-	-	6	6 us	Output settled (5% ~ 95%)
GD Output Rise and Fail Time						Loading = 6.8K + 28.2pF

DC Electrical Characteristics (PVDD=VDD=VDDI=3.3V, AGND=0V, Ta=25°C, bare chip)

3.4.2 System Bus Timing for RGB Interface

DC Electrical Characteristics (PVDD=VDD=VDDI=3.3V, AGND=0V, Ta=25°C, bare chip)

Parameter	Symbol	Min	Тур	Max	Unit
CLK Pulse Duty	Tcw	40	50	60	%
VSYNC Setup Time	Tvst	40	-	-	ns
VSYNC Hold Time	Tvhd	10	-	-	ns
HSYNC Setup Time	Thst	10	-	-	ns
HSYNC Hold Time	Thhd	10	-	-	ns
Data Setup Time	Tdsu	10	-	-	ns
Data Hold Time	Tdhd	10			ns
DE Setup Time	Tdest	10	-	-	ns
DE Hold Time	Tdehd	10	-	-	ns

TFT LCD Module

3.4.3 Input Timing Table

Parallel 24-bit RGB Input Timing (PVDD=VDD=VDDI=3.3V, AGND=0V, Ta=25°C)

Parameter		Symbol	Min	Тур	Max	Unit
D	CLK Frequency	FCLK	23	25	27	MHz
	Period Time	Th	808	816	848	DCLK
	Display Period	Thdisp		800		DCLK
HSYNC	Back Porch	Thbp	4	8	24	DCLK
	Front Porch	Thfp	4	8	24	DLCK
	Pulse Width	Thw	2	4	8	DLCK
	Period Time	Τv	496	512	528	HSYNC
	Display Period	Tvdisp		480		HSYNC
VSYNC	Back Porch	Tvbp	8	16	24	HSYNC
	Front Porch	Tvfp	8	16	24	HYSNC
	Pulse Width	tvw	2	4	8	HSYNC

Note 1: The minimum blanking time depends on the GIP timing of the panel specification.

Note 2: To ensure the compatibility of different panels, it is recommended to use the typically setting.

Notre 3: It is necessary to keep Tvbp = 8 and Thbp = 8 in sync mode. DE mode is unnecessary to keep it.

Note 4: The maximum DCLK Frequency is 27MHz.

TFT LCD Module

3.4.4 Power On/Off Sequence

Symbol	Description	Time	Unit
то	System power stability to RGB RESET signal	≥1	ms
T1	RGB RESET = "High" to DISP = "High"	≥ 10	ms
T2	DISP = "High" to Source/GIP scan blank	85	ms
Т3	Display signal input to Backlight power on (base on Display Signal Frame Rate 60Hz)	≥ 100	ms

Note 1: When DISP pull "H" or "L", IC will execute the internal power on or power off procedures. Please be careful about the timing of DISO and do not interrupt it during power on or power off procedures, otherwise, unexpected errors will occur.

Note 2: RGB interface Display signal: DCLK, VSYNC, HSYNC, DE, DR [7:0], DG [7:0], DB [7:0]

Note 3: LVDS interface Display signal: DLCK P/N, RX [3:0] P/N

4. Optical Specification

4.1 Optical Characteristics

Chara	cteristics	Symbol	Conditions	Min	Тур.	Max	Unit	Note
Contr	ast Ratio	CR	θ=0	-	1000	-	-	1, 2
Respo	onse time	TR + TF	Normal Viewing Angle	-	30	-	ms	1, 3
<u>e</u>	Left	θ _x -		-	85	-		
ξAnε	Right	θx+	CR ≥ 10	-	85	-		
wing	Up	θ _Y +		-	85	-		1, 4
Vie	Down	θγ-		-	85	-		
		Rx		0.576	0.616	0.656		
	Red	Ry		0.329	0.369	0.409	-	
ticity	_	Gx		0.288	0.328	0.368		
oma	Green	Gy		0.523	0.563	0.603		
r Chr		Bx		0.108	0.148	0.188		1, 4, CA-310
olou	Blue	Ву		0.018	0.058	0.098		
U		Wx		0.257	0.297	0.337		
	White	Wy		0.266	0.306	0.346		
Uni	formity	Avg		80	-	-	%	5
Lum	ninance	LV	-	750	800	-	cd/m ²	-
Colo	r Gamut	S (%)		52	57	-	%	-

Measuring Condition: in dark room, at ambient temperature 25±2°C, for 15 min warm-up time.

TFT LCD Module

TFT LCD Module

5. LED Backlight Specification

5.1 LED Driver Electrical Characteristics

The back-light system is edge-lighting type with 24 chips LED.

Item	Symbol	Min	Тур.	Max	Unit
Forward Current	lF	-	150	-	mA
Forward Voltage	VF	22.4	24	26.4	V
LED Lifetime	Hr	-	20000	-	Hrs

Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: $Ta = 25\pm3^{\circ}C$, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta = 25°C and IL = 150 mA. The LED lifetime could be decreased if operating IL is larger than 150mA. The constant current driving method is suggested.

5.2 Internal Circuit Diagram

TFT LCD Module

6. Packaging

TBD

7. Quality Assurance Specification

7.1 Conformity

The performance, function and reliability of the shipped products conform to the Product Specification.

7.2 Environment Required

Customer's test & measurement are required to be conducted under the following conditions:

Temperature:	25 ± 5 ∘ C
Humidity:	65% ± 10% RH
Viewing Angle:	Normal viewing Angle
Illumination:	300 ~ 700 Lux (single fluorescent lamp)
Viewing distance:	30 ~ 50cm
Finger glove (or finger cover) must be worn by the inspector.	
Inspection table or jig must be anti-electrostatic.	

7.3 Delivery Assurance

7.3.1 Delivery Inspection Standards

Class II, Normal Inspection, MIL-STD-105E

7.3.2 Zone Definition

Zone A: Effective Viewing Area (Character or Digit can be seen)

Zone B: Viewing Area except Zone A

Zone C: Outside (Zone A+Zone B) which cannot be seen after assembly by customer.

Zone D: IC Bonding Area

Note: As a general rule, visual defects in Zone C can be ignored when it doesn't affect product function or appearance after assembly by customer

7.3.3 Criteria & Acceptable Quality Level

Item	Criteria	Classification	Partition	
	1) No display, Open or miss line			
Functional defects	2) Display abnormally, Short			
	3) Backlight no lighting, abnormal lighting etc.	Major	0.65	
Missing	Missing components and etc.	IVIAJOI	0.05	
Outline dimension	Overall outline dimension beyond the drawing is			
	not allowed, deformation and etc.			
Color tone	Color unevenness, refer to limited sample			
Spat/Lina defect	Light dot, dim spot, polarizer air bubble, polarizer			
Spot/Line defect	accidented spot and etc.	Minor	1.5	
Soldering appearance	Good soldering, peeling off is not allowed and etc.			
LCD/Polarizer	Black/White spot/line, scratch, crack, etc.			

Note:

a) Light dot : Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.

b) Dim dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue picture.

7.3.4 Criteria & Classification

TFT LCD Module

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
2. Dim spot (light leakage, dent, dark spot etc)SizeAcceptable numberY $\Phi \le 0.15$ Ignore0.15 < $\Phi \le 0.25$ 3 (distance ≥ 10 mm)0.25 < $\Phi \le 0.4$ 2 (distance ≥ 10 mm) $\Phi > 0.4$ 0
SizeAcceptable numberYYABC $\Phi \le 0.15$ Ignore $0.15 < \Phi \le 0.25$ 3 (distance ≥ 10 mm) $0.25 < \Phi \le 0.4$ 2 (distance ≥ 10 mm) $\Phi > 0.4$ 03. Polarizer accidented spot
X $Size$ A B C $\Phi \le 0.15$ $Ignore$ $0.15 < \Phi \le 0.25$ $3 (distance \ge 10mm)$ $0.25 < \Phi \le 0.4$ $2 (distance \ge 10mm)$ $0.25 < \Phi \le 0.4$ 0 $3. Polarizer accidented spot$ $Accentable number$
Y $\Phi \le 0.15$ IgnoreX $0.15 < \Phi \le 0.25$ 3 (distance ≥ 10 mm)0.25 < $\Phi \le 0.4$ 2 (distance ≥ 10 mm) $\Phi > 0.4$ 03. Polarizer accidented spot
X $0.15 < \Phi \le 0.25$ $3 \text{ (distance } \ge 10 \text{ mm)}$ $0.25 < \Phi \le 0.4$ $2 \text{ (distance } \ge 10 \text{ mm)}$ $\Phi > 0.4$ 0 3. Polarizer accidented spot
X $0.25 < \Phi \le 0.4$ 2 (distance ≥ 10 mm) $\Phi > 0.4$ 0 3. Polarizer accidented spot
Φ > 0.4 0 3. Polarizer accidented spot
3. Polarizer accidented spot
Accentable number
Size Acceptable Humber
A B C
$\Phi \le 0.2$ Ignore
$0.2 < \Phi \le 0.5$ 2 (distance ≥ 10 mm) Ignore
Φ > 0.5 0
4. Polarizer Bubble
Size Acceptable number
A B C
$\Phi \le 0.2$ Ignore
$0.2 < \Phi \le 0.4$ 2 (distance ≥ 10 mm) Ignore
0.4 < Φ ≤ 0.5 1
Φ > 0.5 0
Pixel bad points
Item Zone A Acceptable number
Random N ≤ 2
Bright dot 2 dots adjacent N ≤ 0
$\frac{3 \text{ dots adjacent}}{N \leq 0}$
Random N ≤ 3
LCD Pixel defect Dark dot 2 dots adjacent N ≤ 0
$\frac{3 \text{ dots adjacent}}{N \le 0}$
1. Minimum distance between
Dright dots.
Distance Distance Distance Detween dark 5mm
date
dots 3. Minimum distance between dark

TFT LCD Module

Item		Criteria (mm)				
	Total brigh	it and dark dot		N ≤	4	
	Note:					
	A) Bright dot: Dots appear bright and unchanged in size in which LCD panel					
	is displaying under black pattern.					
	B) Dark dot: Dots appear dark and unchanged in size in which LCD panel is					
	displaying under pure r	ed, green, blue picture				
	C) 2 dot adjacent = 1 pa	air = 2 dots				
	Picture:					
	2 dot adjace	nt 2	dot adja	cent		
	2 dot adjacent (vertical) 2 dot a			cent (slar	nt)	
	N : Count					
Line defect (LCD/Polarizer backlight			Acce	eptable nu	ımber	
black/white line, scratch, stain)	Width (mm)	Length (mm)	А	В	С	
	W ≤ 0.05	Ignore	Ign	ore		
↓ w	0.05 < W ≤ 0.06	L ≤ 5.0	N s	≤ 3	Ignore	
W: width, L : length	0.06 < W ≤ 0.08	L ≤ 4.0	N s	≤ 2		
	W > 0.08 Define as spot defect					
Electronic Components SMT	Not allow missing parts, solderless connection, cold solder joint, mismatch.					
	The positive and negative polarity opposite					
	1. Color: Measuring the color coordinates. The measurement standard					
Display color & Brightness.	according to the datashe	eet or samples.				
	2. Brightness: Measuring the brightness of White screen. The measurement					
	standard according to th	e datasheet or Sample	S.			
LCD Mura/Waving/Hot spot	Not visible through 5% ND filter in 50% gray or judge by limit sample if					
	necessary.					

TFT LCD Module

Criteria (functional items)

Number	ltem	Criteria
1	No display	
2	Missing segment	Netallowed
3	Short	NOT dilowed
4	Backlight no lighting	

7.4 Dealing with Customer Complaints

7.4.1 Non-conforming Analysis

Purchaser should supply Densitron with detailed data of non-conforming sample.

After accepting it, Densitron should complete the analysis in reasonable time and update the status to the purchaser.

7.4.2 Handling of Non-conforming Displays

If any non-conforming displays are found during customer acceptance inspection which Densitron is clearly responsible for, return them to Densitron.

Both Densitron and customer should analyse the reason and discuss the handling of non-conforming displays when the reason is not clear.

Equally, both sides should discuss and come to agreement for issues pertaining to modification of Densitron quality assurance standard.

8. Reliability Specification

8.1 Reliability Tests

Test Item	Test Condition	Inspection after Test
High Temperature Operation	85°C, 96 hours	
Low Temperature Operation	-30°C, 96 hours	_
High Temperature Storage	85°C, 96 hours	
Low Temperature Storage	-30°C, 96 hours	Inspection after 2~4hours
Damp Proof Test	60°C, 90%RH, 96 hours	storage at room
Temperature Cycle	-10°C ~ 60°C, 20cycles, 30 min Change time: 5min	temperature, the sample shall be free from defects:
ESD Test	C = 150pF, R = 330,5points/panel Air: ±8KV, 5times; Contact: ±6KV, 5 times. (Environment: 15°C ~ 35°C, 30% ~ 60%).	 Air bubble in the LCD. Non-display. Missing segments. Glass crack
Vibration Test (non-operation)	Frequency : 10Hz ~ 55Hz Stroke: 1.5mm Sweep: 10Hz ~ 55Hz ~ 10Hz, 2 hours for each direction of X.Y.Z. (6 hours for total) (Package condition).	5. Current Idd is twice higher than initial value.
Box Drop Test	1 Corner 3 Edges 6 faces,80cm (MEDIUM BOX)	-

Note 1: The test samples should be applied to only one test item.

Note 2: Sample size for each test item is 5~10pcs.

Note 3: For Damp Proof Test, Pure water(Resistance > $10M\Omega$) should be used.

Note 4: In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

Note 5: Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

Note 6: The color fading mura of polarizing filter should not care.

8.1.1 Inspection Check Standard

After the completion of the described reliability test, the samples are to be left at room temperature for 4 hrs prior to conducting the inspection check at 25±5 °C, 65±5% RH.

9. Handling Precautions

9.1 Handling Precautions

- 1) Since the display panel is made of glass, do not apply mechanical impacts such us dropping from a high position.
- 2) If the display panel is broken by accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- 3) If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of water
- 4) If pressure is applied to the display surface or its neighbourhood of the display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- 5) The polarizer covering the surface of the display module is soft and easily scratched. Please be careful when handling the display module.
- 6) When the surface of the polarizer of the display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
 - a. Scotch Mending Tape No. 810 or an equivalent
 - b. Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.
 - c. Also, pay attention that the following liquid and solvent may spoil the polarizer:
 - Water
 - Ketone
 - Aromatic Solvents
- 7) Hold the display module very carefully when placing it into the system housing. Do not apply excessive stress or pressure to display module. And, do not over bend the film with electrode pattern layouts. These stresses will

influence the display performance. Also, secure sufficient rigidity for the outer cases.

- 8) Do not apply stress to the LSI chips and the surrounding molded sections.
- 9) Do not disassemble nor modify the display module.
- 10) Do not apply input signals while the logic power is off.
- 11) Pay sufficient attention to the working environments when handing display modules to prevent occurrence of element breakage accidents by static electricity.
 - a. Be sure to make human body grounding when handling display modules.

- b. Be sure to ground tools to use or assembly such as soldering irons.
- c. To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- d. Protective film is being applied to the surface of the display panel of the display module. Be careful since static electricity may be generated when exfoliating the protective film.
- 12) A Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. If the display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).
- 13) If electric current is applied when the display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

9.2 Storage Precautions

- 1) When storing display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps, etc. and, also, avoiding high temperature and high humidity environments or low temperature (less than 0°C) environments. (We recommend you store these modules in the packaged state when they are shipped from Densitron) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- 2) If electric current is applied when water drops are adhering to the surface of the display module, when the display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

9.3 Designing Precautions

- 1) The absolute maximum ratings are the ratings which cannot be exceeded for display module, and if these values are exceeded, panel damage may happen.
- 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
- 3) We recommend you install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)
- 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighbouring devices.
- 5) As for EMI, take necessary measures on the equipment side basically.
- 6) When fastening the display module, fasten the external plastic housing section.
- 7) If power supply to the display module is forcibly shut down by such errors as taking out the main battery while the display panel is in operation, we cannot guarantee the quality of this display module.

9.4 Operation Precautions

TFT LCD Module

- 1) It is indispensable to drive the display within the specified voltage limit since excessive voltage shortens its life.
- 2) Direct current causes an electrochemical reaction with remarkable deterioration of the display quality. Give careful consideration to prevent direct current during ON/OFF timing and during operation.
- 3) Response time is extremely delayed at temperatures lower than the operating temperature range while, at high temperatures, displays become dark. However, this phenomenon is reversible and does not mean a malfunction or a display that has been permanently damaged.
- 4) To protect display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the display modules.
 - a. Pins and electrodes
 - b. Pattern layouts such as the FPC
- 5) When the driver is being exposed (COG), semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if the driver is exposed to light, malfunctioning may occur.
 - a. Design the product and installation method so that the driver may be shielded from light in actual usage.
 - b. Design the product and installation method so that the driver may be shielded from light during the inspection processes.
- 6) Although the display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from the influences of noise on the system design.
- 7) We recommend you construct its software to make periodical refreshments of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.

9.5 Cleaning Precautions

1) Keep TFT Scratch free: Avoid using abrasive materials like paper towels and newspaper in cleaning TFT LCD screens as they may scratch the surface. Instead, opt for a lint-free cloth. Don't spray the liquid directly on the monitor and remember to put gentle pressure when wiping the screen.

2) Avoid Vibration: During cleaning process, try to keep the TFT on shock proof platform to avoid strong shock and vibration. Do not apply pressure to the LCD screen of the LCD or bump or squeeze the LCD display back cover.

3) When the surface of the polarizer of the display module has soil, clean the surface. It takes advantage of using the following adhesion tape:

- a) Scotch Mending Tape No. 810 or an equivalent.
- b) Never try to breathe upon the soiled surface.
- c) List of Safe and Unsafe solvents to clean TFT display:

TFT LCD Module

Safe Solvents	Unsafe Solvents
Distilled Water	Ammonia
Isopropyl Alcohol	Acetone
Diluted White Vinegar = Water (Mix 1 part vinegar + 5 parts of Water)	Ethyl Alcohol
	Methyl Chloride
	Ethyl Acid

9.6 Other Precautions

1) Request the qualified companies to handle industrial wastes when disposing of the display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.